How to make apps popular on Google
play store: Visual analysis of google
play store app features

by
Nupura Walawalkar

A Project Report Submitted
in
Partial Fulfillment of the
Requirements for the Degree of
Master of Science
Supervised by

Professor Erik Golen
School of Information

B. Thomas Golisano College of Computing and Information Sciences
Rochester Institute of Technology
Rochester, New York

May 2023

ii

The project report “How to make apps popular on Google play store: Visual Anal-
ysis of google play store app features” by Nupura Walawalkar has been examined and
approved by the following Examination Committee:

Professor Erik Golen
Senior Lecturer
Project Committee Chair

Professor John-Paul Takats
Visiting Lecturer

Dedication

iii

Acknowledgments

I am grateful to my family

iv

Abstract

How to make apps popular on Google play store: Visual analysis
of google play store app features

Nupura Walawalkar

Supervising Professor: Professor Erik Golen

People frequently use mobile applications for communication, traveling, education,
work, and leisure activities. Google Play Store and Apple Appstore are the two major
app stores due to many apps and the popularity of Apple and Android devices. There
are approximately 2.5 billion Android users base is and 1 billion Apple users as of 2021.
The Android app ecosystem has evolved and flourished because android apps are sup-
ported on various devices. Many innovative apps are published daily, but only some
have become very popular among users over time. Google Play store offers good guide-
lines for developers to create appealing app store listings. However, it is yet to be de-
termined which parts of the app advertisement persuade users to download and rate
the app. It would be valuable to analyze the google play store app advertisements to
help the developers understand user preferences while selecting features for an app.
Previous work related to this area only evaluated specific aspects of the app store list-
ing, such as app description, pricing, reviews, user-developer dialog in thoughts, and
permissions. Still, studying the combination of different parts of an app advertisement
would be valuable. This project intends to identify which parts of an app store list-
ing boost ratings and app downloads by analyzing app features using a random forest
classifier and performing a sentimental analysis of reviews. The analysis performed
in this project will provide an insightful dashboard for developers to understand user
preferences for making their apps popular.

Contents

Dedication e iii
Acknowledgments iv
Abstract e 1
1 Introduction 6
1.1 Background. e 6

1.2 Dataset e e e 7

1.3 Objective e 7

2 RelatedWork 7
3 Methodology 9
3.1 Data Extraction 10

3.2 Datapreprocessing.o e e 10
3.2.1 Missing value detection and imputation 14

3.3 Google play store data exploration 15

3.4 Featureselection e 21

3.5 Buildingaclassifiermodel, . 23
3.51 BuildingkNNmodel 25

3.52 BuildingSVMmodel 27

3.5.3 Building random forestmodel 30

3.6 Sentimental analysis of Appreviews 33
3.6.1 Datapreprocessing 33

3.6.2 Sentimentalanalysis 34

3.7 Dashboard for visualization 37

4 Results e 38
5 Conclusion e 39
51 Limitations o e 40

52 FutureWork 40

References o o e e e e 40

1
2

List of Tables

Initial feature description Lo oo
Summary of Classifier modelresults

O 00 9 O LB AW N

W W W WN N NDDNIDNID NI NIRNINIDN R H H 2o o 1
PR O VW WU O A W EREOSO OV ® IO U A WK KR O

List of Figures
Research process 9
Percentage of missing valuesin each feature 14
Number of Appsineach Category 16
Distribution of app installations 16
Average number of reviews for apps in each category. 17
Average app installationsin each category 17
Effect of length of App NameonInstalls. 17
Effect of length of App DescriptiononInstalls 18
Percentage of Free /Paid Apps 18
Percentage of Apps which supportads 18
Percentage of Apps with In-app purchases. 18
Rating of Ad-supportedapps 19
Rating of Ad-supportedapps oo 19
Rating of Editors choiceapps 20
Rating of App accordingtosize, 20
Relationship between variables Rating, Size, Price, reviews, Installs_bucket 21
Cumulative explained varianceplot 22
PCAbiplot 22
Best performing features00 L. 23
Class distribution beforesmote 24
Class distribution aftersmote 25
kNN before SMOTE 26
Confusion matrix of KNN before SMOTE 26
kNN after SMOTE 27
Confusion matrix of kNN after SMOTE 27
SVM before SMOTE 28
Confusion matrix of SVM before SMOTE 28
SVM after SMOTE e 29
Confusion matrix of SVM after SMOTE 29
Balanced Random forestmodel 30
Important features given by Balanced Random forest model 31
Confusion matrix of Random forest model before applying SMOTE . . 31

Random forest model after applying SMOTE 32

34
35
36
37
38
39
40
41
42

Important features given by Random forest model after applying SMOTE 32

Confusion matrix of Random forest model after applying SMOTE . .. 33
Positive sentimentsinreviews 0oL 34
Positive bigrams o 35
Positive trigrams L Lo 35
Negative sentimentsinreviews 36
Negative bigrams e 36
Negative trigrams L e 37
Tableaudashboard L. 38

1 Introduction

1.1 Background

The mobile applications market has been one of the fastest-growing segments of the
software application market. A study by MarketWatch shows that people in most de-
veloped countries spend an average of 70% of their digital minutes on mobile apps
(MarketWatch, 2022). People use mobile apps for different purposes, such as bank-
ing, shopping, social media, and photography. Many companies provide their services
through mobile apps to lure many consumers. Companies use mobile apps to gain a
competitive edge over their competitors. They provide their customers with simple,
contactless, personalized experiences through their apps. Android OS seems to be the
most popular smartphone OS, with a market share of 71.5 % as of Q1 of 2022, outper-
forming iOS Apple’s smartphone OS, which has 27.68 % (MarketWatch, 2022).

The Android OS app store, Google Play Store, provides a good platform and SDKs
for developers to deploy apps. Android software development kit offers an easy-to-
use integrated development environment for developers to create apps. Android apps
are supported on different types of devices. More than 2 million apps are available on
Google Play Store for download. About There is intense competition among businesses
to publish their apps on the google play store. Time-to-market plays an essential role
in consumer engagement and consumer retention, increasing the company revenue
by increasing the number of app installations. To remain listed on the app store and
increase app installations, app developers must follow Google Play’s security guidelines
and procedures, such as scanning apps for malicious behavior, before publishing their
apps. Google play store often removes malicious apps if there it has low ratings, terrible
reviews, or user complaints. New app developers might be interested to know they
should design and market their app and which features might lead to it getting featured
in the top or trending apps. App users often express their experience using the app,
request new features and complain about app updates in reviews.

Recently, researchers have also started taking advantage of the popularity of app
markets and published app prototypes to collect feedback from various app users (Zhai
et al., 2009). Therefore, researchers and app developers must get insights into the mo-
bile application market and consumer behavior to stay ahead of the competition.

Google play store defines apps into different buckets depending on the minimum
number of installations of the app. When an app is newly published or updated, it
appears in the list of recently added or updated apps on the Google App store. A few
users might install an app when a developer releases it initially. It needs to be clarified
how the app advertisement needs to be written to appeal to a broad audience.

1.2 Dataset

To understand this problem, I have used Google play store data provided by Gautham
Prakash on Kaggle (Prakash, 2021) was used. The dataset is from June 2021 and con-
tains records for 2.3 million apps. It has 23 features: name, category, type(paid/free),
rating, minimum and maximum installs, editor’s choice, reviews, size, last updated,
and supported android version. In addition, app descriptions and reviews were col-
lected for about 700k apps from this dataset.

1.3 Objective

1. Google Playstore data exploration: I explored the original dataset and extracted
additional features such as app descriptions and reviews using the Google play
store scraper python package. The data exploration contains bar charts and pie
charts explaining the relationship between different attributes. This section also
includes how missing data were handled. This section concludes with informa-
tion about attributes useful for building the model and for sentimental analysis.

2. Tableau dashboard for data visualization: The Tableau dashboard will provide
users with a comprehensive overview of different statistics that make apps pop-
ular.

3. Train multiple classifier models to identify features of popular apps: Using the
features identified in data exploration, I have trained multiple classifier model
and selected random forest model to identify which features are essential for im-
proving app installations.

4. Perform sentimental analysis on app reviews to find user opinions about popular
and less popular apps: This section includes analyzing the polarity and subjec-
tivity of sentiments in app reviews.

The rest of the report is organized into 4 sections: section 2 for previous work on
random forest classifier and sentimental analysis, section 3 for methodology, section 4
for results, and section 5 for concluding remarks.

2 Related Work

Hundreds of apps in different categories, such as games, family, and entertainment,
are published daily on the Google Play store. However, only some apps have become
popular among users. Companies often promote their apps on social media such as
Facebook and Instagram through paid digital marketing campaigns (Play, 2022). These
app promotions also help to improve the visibility of apps. Apps become popular when

more users can discover newly published apps. Google Play provides guidelines for de-
velopers to publish apps and describe them using keywords to make them easily search-
able in the Google Play Store (Google, 2021). A striking title, a description focused on
what users want from the application, and high-quality graphic images and videos of
an app are some strategies for making the app stand out in search results. These guide-
lines, however, do not ensure that users will install the app.

A wide-ranging study by He Jiang et al. (Jiang et al., 2015) employs crowdsourcing
to identify which features of an app store listing are more helpful to users. This paper
focuses on improving app descriptions to attract more users to install the app. The
authors gathered feedback and scores from participants in their experiment to build
an SVM model to identify which features of the app description benefit users. This
study only focuses on one aspect of the app advertisement on google play. Several other
factors affect app downloads by users. X.Wei et al studied how the Google Play app
store has evolved regarding evaluating app permissions (Wei et al., 2012). Another
research by Taylor and Martinovic (Taylor & Martinovic, 2017) showed the evolution
of permissions required for free and paid apps and how permission-hungry apps affect
user decisions to download the app. Users might be hesitant to download apps that
require unwarranted licenses. B. Carbunar et al. have studied how app pricing affects
app downloads (Carbunar & Potharaju, 2015). Another study provides critical insights
into how a good app description with searchable keywords makes them discoverable
and influences users to download the app.

Niels Henze and Susanne Boll (Henze & Boll, 2011) analyzed a dataset of 150K
game installations and observed 24k published apps to determine the best time of the
week to deploy apps that will increase app installations. They observed that apps re-
leased on Sunday performed best in the app market. Saad et al. (Saad & Nanath, 2020)
performed sentimental analysis using a support vector machine(SVM), Naive Bayes
classifier, and K-nearest neighbor models on app reviews to identify popular apps. P.
B. Prakash Reddy et al. (Reddy & Nallabolu, 2020) analyzed apps in each category,
size of apps, reviews, and price and identified that the size of apps somewhat impacts
downloads.

There is an opportunity for study in which combining these factors helps increase
app installations. Random forests classifier is a stable and robust prediction model
which provides accurate results by building and merging multiple decision trees. Jingx-
ian Zhanget.al (Jin & Liu, 2010) used a similar approach where they used random forest
regression to measure how expensive cars are and to watch brands look based on their
websites. M. Nayebi et al. analyzed the marketability of F-Droid apps (open-source
android app store) using three machine learning models. They found random forest
classifier performed best with an F1 score of 78% to identify marketable release.

While analyzing the app advertisement might help create an excellent technical and
business strategy, we should also consider the user’s experience with the app (Carrefio
& Winbladh, 2013). An app user’s review describing their experience using the app
might intentionally or unintentionally affect app downloads Ware, 2012. Google Play

Store stores a large number of app reviews for each app. These reviews range from
compliments to complaints about app updates and features. It can be tricky to filter
positive reviews from negative reviews. In such a scenario, the sentimental analysis
might be helpful to mine people’s opinions and attitudes towards the app.

Sentimental analysis has three types of classification levels: document level, sen-
tence level, and feature level analysis. Sentimental analysis involves subjectivity and
polarity analysis of text to determine how positive, neutral, or negative it is. There
are two types of sentimental analysis techniques: machine learning and lexicon-based
techniques (Agrawal et al., 2021). Machine learning techniques include the Naive
Bayes classifier, SVM, neural networks, rule-based classifiers, lexicon-based approaches
such as a dictionary-based process, the manual opinion method, and a corpus-based
process. Machine learning-based approaches use labeled datasets to predict the senti-
ment of the text. Lexicon-based method calculates the sentiment orientation of a set of
sentences in the document using a dictionary with each labeled as positive, negative,
or neutral sentiments along with polarity, parts of speech and subjectivity classifiers,
mood, and modality. The sentiment orientation can be positive, negative, or neutral.
The overall sentiment in the document is scored using a function that takes the sum or
average of positive and negative words in the text.

3 Methodology

This section consists of 5 parts: Data collection, data preprocessing and feature selec-
tion, building a random forest model, sentimental analysis, and data visualization using
the tableau dashboard.

Data collection from Data collection and Data prepracessing Data visualization Dashboard
Kaggle reviews using tableau
Random forrest
classifier

Sentimenial analysis
of reviews

Features of popular
apps

Figure 1. Research process

3.1 Data Extraction

The Google Play store dataset provided by G. Prakash on Kaggle contained several fields
such as the app names, category of apps, ratings, number of installations, developer de-
tails, and android version. The dataset consisted of a single CSV file. The app descrip-
tions and reviews not present in the original dataset were extracted using the google-

play-store-scraper python package.

3.2 Data preprocessing

The following table summarizes the features in raw data.

Table 1. Initial feature description

Google play store data initial features
Field Description Type No. of
records
(before
cleaning)
App Id Unique identifier of | String 764466
app
Category Type of service pro- String 764466
vided by the app.
There are different
categories of apps
such as games, tools,
entertainment, music,
weather etc.
Rating Rating given by users | Nu- 757067
for an app. App rating meric
ranges from 1-5 stars
Rating Number of ratings | Nu- 757067
count given by users who | meric
installed the app

Continuation of Table 2

Installs Google play store | String 764431
defines brackets for
the number of instal-
lations such as 1+ ,
54, 104, 100+ . These
brackets indicate the
minimum number of
users who installed
the app.
Maximum Actual number of in- Nu- 764431
Installs stallations meric
Minimum Google play store | Nu- 764466
Installs defines brackets for | meric
the number of instal-
lations such as 1+ ,
54, 104, 100+ . These
brackets indicate the
minimum number of
users who installed
the app.
Free Indicates whether the Boolean 764466
app is free or paid
Price Price of app Nu- 764466
meric
Currency Currencies supported String 764426
for paying app’s price
Size Size of App in kb, MB | String 764460
and GB
Minimum Minimum Android | String 762006
Android version supported by
Version app
Developer Developer’s unique | String 764463
Id identifier
Developer Developer’s web page String 530958
Website
Developer Developer email String 764462
Email
Released Release date of app String 739810

11

Continuation of Table 2

Privacy webpage with details | String 764466
Policy of how app protect

user privacy while

using the app
Last Up- | datewhentheappwas | String 764466
dated last updated
Content Indicates the type os | String 633545
Rating user the app is suitable

for. Content rating can

be , Everyone, Teen,

Adults only 18+ , Ma-

ture 174, unrated
Ad- Many apps display ads | Boolean 764466
Supported when a user is using

the app. The ads help

to generate revenue.

This flag indicates to

user whether the app

supports ads.
In-app pur- | Indicates whether the | Boolean 764466
chases app provides in app

purchases.
Editor Indicates which apps | Boolean 764466
Choice were chosen by edi-

torial team of google

playstore. This flag

helps to highlight new

and innovative apps

on google play store

page
description summary of app’s fea- String 764466

tures
descrip- summary of app’s fea- | String 764466
tionhtml tures
description | summary of app’s fea- | String 764466

tures
video url of youtube video of | String 72009

app. It gives a preview
of the app interface

13

Continuation of Table 2

screen- URL of images of app | String 764466
shots interface

After extracting additional data and combining the datasets, a few columns in raw
data contained some valuable data in different formats and garbage data. Categori-
cal and string columns must be converted into a numeric format to build a machine-
learning model efficiently.

1.

Title Length: The app name column was in string format. It consisted of alphanu-
meric characters and special characters such as emojis. A new field was created
by extracting the number of words in App Name to analyze if it is an important
feature in marketing the app.

. Size: The size of different apps were kilobytes, megabytes, and gigabytes. About

26,692 apps had a ’Varies with device’ size. The app size was converted to kilo-
bytes and the *Varies with device’ size was converted to 'NA.’

. No of videos: The dataset contained a list of URLSs of youtube videos created to

allow users to preview the app. A new field containing the number of videos
created for an app.

No of images: The dataset contained a list of URLs of promotional images cre-
ated to allow users to preview the app. A new field containing the number of
images/screenshots created for an app.

Released day of the week: The dataset contained an app’s 'Released date.” A new
field was created that stated the day of the week based on the Release date. E.g.:
If an app was released on ’2021-03-02’, the released day of the week would be 1.

Content rating: The content rating column consisted of categorical values. The
values were encoded using one-hot encoding to create dummy/indicator vari-
ables representing the different ratings.

. Installs: Each app is grouped into various categories, such as 10+, 50+,100+,

and 500+, depending on the number of maximum installs of the app. If an app
had 1500 installs, then it was placed in the 1000+ category. The installs field was
converted from string to numeric by removing the ’+’ sign at the end of the string.

. Installs bucket: Classification for this dataset will be performed based on the

number of installations. For this purpose, a new target variable, "Installs_bucket”
was created based on the Installs column. Apps with greater than 50,000 instal-
lations were grouped in the "high” class, and apps with less than 50,000 installa-
tions were grouped into the "low” class.

3.2.1 Missing value detection and imputation
column_name percent_missing count
App Name App Mame 0.000131 1
App Id App Id 0.000000 0
Category Category 0.000000 0
Rating Rating 0.967865 7399
Rating Count Rating Count 0.967365 7399
Installs Installs 0.004578 35
Minimum Installs Minimum Installs 0.004578 35
Maximum Installs Maximum Installs 0.000000 0
Free Free 0.000000 0
Price Price 0.000000 0
Currency Currency 0.005232 40
Size Size 0.000785 6
Minimum Android Minimum Android 0.321793 2460
Developer Id Developer Id 0.000392 3
Developer Website Developer Website 30.545243 233508
Developer Email Developer Email 0.000523 4
Released Released 3225238 24656
Last Updated Last Updated 0.000000 0
Content Rating Content Rating 0.000000 0
Privacy Policy Privacy Policy 17125811 130921
Ad Supported Ad Supported 0.000000 0
In App Purchases In App Purchases 0.000000 0
Editors Choice Editors Choice 0.000000 0
Scraped Time Scraped Time 0.000000 0
description description 4158197 31738
reviews reviews 4971575 38006
screenshots screenshots 0.000000 0
video video 90.580484 692457
videolmage videolmage 90582315 692471

Figure 2. Percentage of missing values in each feature

The Google Playstore data set provided by Kaggle and the additional data extracted
using the google playstore scraper contained some missing values as shown in Figure
2. These missing values were distributed across different categories. More than 90%
of the apps in the dataset didn’t have promotional videos. Promotional videos are not

15

mandatory for publishing the app on the google play store, but the app encourages
developers to add a promotional video to improve user engagement. The release date
was missing for around 3.22% app. Other textual data, such as the privacy policy of 17%
apps and the developer website of 30% apps, is missing.

Missing values can result in low-quality data and unreliable data mining results.
Finding and imputing missing values in the dataset is necessary to create an efficient
and robust data mining model. The authors Makaba et al (Makaba & Dogo, 2019) sug-
gest several strategies for handling missing data. Deleting/Discarding data works if the
data point is insignificant; otherwise, it may lead to data loss. Replacing values with
mean or median values is more suitable for numerical data, but it doesn’t factor in the
correlation between different features and can give incorrect results. Replacing values
with mode or most frequent values works well with categorical data but also introduces
bias in the data. An alternate method is to use k-NN algorithm, which uses feature
similarity to predict missing values. It finds the closest neighbors to the observation
record with missing data and then imputes missing values based on the records with
non-missing values. Although this method is more accurate than previous methods,
it is computationally more expensive for large datasets. A recent method called Multi-
variate imputation by chained equation(MICE) (van Buuren & Groothuis-Oudshoorn,
2011) fills missing values multiple times. This method can effortlessly impute a missing
value for different types of variables.

Based on the above information,the data imputation step first started by removing
35 rows with missing ’Installs’ and 26,692 records having ’Varies with device’ size was
removed. The MICE approach imputed missing values in numerical fields such as Rat-
ing, Rating Count, No of videos, and reviews. The Iterative Imputer python package
imputed 692445 values for no of videos, 38006 for reviews, and 7399 for Rating and
Rating count. The final dataset after imputing missing values contained 737739 apps.

3.3 Google play store data exploration

The google play store has different categories of apps. Education category is quite com-
mon in this dataset. Books and Reference ,Music and Tools apps also seem to be popu-
lar. Tools and casual, arcade, and action gaming apps are the most installed apps.

16

&0000
70000
60000

& 50000

H

§ 20000

5

2 20000

20000

§

Books & Reference EEEG—_—
sines

Figure 3. Number of Apps in each Category

Google play store tracks the maximum and minimum installations of apps and
groups them depending on the number of minimum installations. Figure 4 shows the
distribution of apps according to these groups. The majority of apps have less than
10-50000+ installations. There are only so many apps that have higher than 50000 in-
stallations.

140000

120000
100000
20000
60000
40000
20000 I I

Figure 4. Distribution of app installations

Number of apps

10000

50000 ——

100000

500000 g
1000000
5000000 |
10000000 |
50000000
100000000
500000000
1000000000

Installs

17

Number of Installs

Maps & Navigation

Category

Figure 6. Average app installations in each category

Although Tools apps have the most installed, gaming apps like action, adventure,
arcade, and puzzle games are the best-performing apps because they get more user re-
sponses through ratings and reviews. Maps and navigation, medical, music, art and
design, and events are the least-performing apps. Since reviews are essential for devel-
opers to gauge user satisfaction, users mention their experience with the app’s different
features and rate it. These reviews often help other users decide whether to install the
app. Further analysis from users’ points of view about different app features, such as
app name, sizing and pricing strategy, ad support, and in-app purchases, might help to
understand what influences users to install an app.

200000
250000
260000
240000
20000
200000
180000

160000
80000
60000
40000 I
oo
q Elewnlonl..n
e - & o v o e ~ o o o ¢« e T o e = ® 2 8 & §

tlle_len

Mumber of Apps

]

Figure 7. Effect of length of App Name on Installs

18

The Google play store suggests that developers keep app names as short and easily
searchable as possible. Figure 7 indicates that app names having eight or fewer words
have more installations than apps with longer names.

-sss o

E 100 150 £

Figure 8. Effect of length of App Description on Installs

Figure 8 indicates that users highly rated apps with shorter descriptions (less than
50 sentences). Very few apps with lengthy descriptions received ratings of more than
three stars. App descriptions that listed the features and permissions in a structured
format required by apps received good ratings.

Percemage of Free and Paid Apps in playslore Percentage of Apps which support Ads in playstore Percentage of Apps which require In app purchases in playstore

False

Aop1d

False

AEF Id
App Id

True

Figure 11. Percentage
Figure 9. Percentage of Figure 10. Percentage of of Apps with In-app pur-
Free /Paid Apps Apps which support ads chases

The primary motivation of developers behind increasing app installations is to in-
crease their customer base and revenue. Developers can earn revenue by making paid
apps, displaying ads, or asking users to purchase items or services while using their
apps. Figures 9,10, and 11 show that Free apps dominate the Android app market—about
47% of apps in the dataset support ads. The users seem to be more tolerant of apps that
display ads than paid apps and apps that require In-app purchases. It is easier for users
to install the app, explore the features, and then pay for services as required. Figures 12
and 13 show that apps supported and apps with in-app purchases have higher ratings
than other apps.

19

Fake

Figure 13. Rating of Ad-supported apps

Google Play Store has a feature called ’Editors Choice’ for some apps. There are
about 309 Editors’ choice apps out of 737k apps. New apps with innovative features
are added to the editor’s choice apps. These apps are featured on the Google Play Store
and recommended to users. Figure 14 shows that editor’s choice apps received a high
rating of 4.3.

20

Figure 14. Rating of Editors choice apps

Apart from the cost of the app, users also look at the size of the app. Mobile devices
have alimited amount of space. Bulky apps can affect the performance of the other apps
on the mobile device. Users might install bulky apps with good graphics and plenty of
innovative features. Figure 15 shows that lightweight apps have a higher rating than
bulky apps, with few exceptions. The average app size in the dataset is 200MB.

Figure 15. Rating of App according to size

Figure 16 shows the relationship between essential variables such as Size, Price,
Rating, and the number of reviews. The popular apps are in orange, and the less pop-
ular apps are in blue. The size and price of the app are negatively correlated with the
rating. Apps rating decreases with an increase in size or price. The number of reviews is
positively correlated with ratings for popular apps. Size and price have a weak negative
correlation for less popular apps.

21

5 e . 8
i. gm - . i'.‘ [] -
4 = BHEChe HI
i U
o 3 g,p‘ S H
.?_'EU ‘g.l i
2 !% - !‘
¢ f
1
0 WUSENBIIBEIS S8 SISE B B L]
[]
1.50
1.25
LI -
1o §' H
o
Hors § i_ ?
H 4 ¥
050 ¢ H i
025 é 2: . : [T
.) f
ooo & BN & woe s te i‘m’j = H
Installs_bucket
* 3 ¢ g
- ' = fig
00 e :
H H
E 200 : :
F
100 ;
H .
| o R N, L]
0 & SORIAGE RIS R SR A eEL B 8 FeE 8 L] CIa e - -
1e6
10 [] [] []
25
20]]]
g [] (]]
]
g 15 - - -
1.0
05 f % ¥
"'?“_k':h E:' £_ _ | i
0.0 - e aliein s W ECMRESNISEDE S8 SRS &8 e
o 2 4 0.0 05 10 15 0 200 400 O 1 2 3
Rating Size 1ef Frice reviews e

Figure 16. Relationship between variables Rating, Size, Price, reviews, Installs_bucket

3.4 Feature selection

Feature selection is one of the essential steps in building a machine-learning model.
This process involves reducing the number of input variables in the dataset and mini-
mizing the loss of information to build an efficient machine-learning model. Principal
component analysis (PCA), a type of dimensionality reduction technique, was selected
to extract this dataset’s features. PCA identifies crucial relationships between variables
in the dataset, performs a linear transformation on a dataset, and quantifies the rela-
tionships.

22

Cumulative explained variance
15 Principal Components explain [38.51%] of the variance.

...------------_

®
Principle Component

Figure 17. Cumulative explained variance plot

Figure 17 shows a cumulative explained variance plot which contains variance for
the initial 19 components in the dataset ranked according to theier explained variance.
There is a line that marks the threshold for 95% explained variance. We can see how
the curve flattens slightly around 16 or 17 components. The line drawn for 95%, the
total explained variance is at approximately 15 components. This means the first 15
components contain most of the information.

15 Principal Components explain [98.51%] of the variance

0

[
PC1 (11.9% explvar)

Figure 18. PCA biplot

Figure 17 shows a cumulative explained variance plot that contains variance for
the initial 19 components in the dataset ranked according to their explained variance.
There is a line that marks the threshold for 95% explained variance. We can see how
the curve flattens slightly around 16 or 17 components. The line drawn for 95%, the
total explained variance is at approximately 15 components. It means that the first 15
components contain most of the information.

PC feature loading ftype

0 PCH Everyone -5697607e-01 best
1 PC2 Rating Count 6.375510e-01 best
2 PC3 num_images -3.864622e-01 best
3 PC4 Free -6.613727e-01 Dest
4 PC5 Size -5.699458e-01 best
5 PCa Mature 17+ -7.908124e-01 best
6 PCY Everyone 10+ 7.415402e-01 best
7T PCs8 Adults only 18+ 9.621522e-01 best
g PCo Unrated 9.019255e-01 best
9 PC10 Released_day_of week -8352932e-01 Dbest
10 PC™M Editors Choice -9.353797e-01 best
11 PCAZ Rating -8.214388e-01 best
12 PCA13 num_images -6.842589e-01 Dbest
13 PC14 In App Purchases 6.044885e-01 Dbest
14 PC15 Price 5.283962e-01 Dbest
15 PC3 Ad Supported -3.786423e-01 weak
16 PC2 reviews G.347168e-01 weak
17 PCH Teen 5.286452e-01 weak
18 PC3 num_video 1.110223e-16 weak
19 PCHZ2 titte_len 4.151117e-01 weak

Figure 19. Best performing features

23

This technique selected Everyone, Rating Count, Rating’, 'Free’ ’Price’, ’Size’, 'In
App Purchases’, "Editors Choice’, 'Released_day_of_week’;Adults only 18+’,"Everyone’,

"Everyone 10+, ’Mature 17+, 'Unrated’, 'num_images’ as important features.

3.5 Building a classifier model

The Random Forest Classifier Algorithm is a popular and sturdy supervised machine
learning algorithm that constructs multiple decision trees on training samples. This al-
gorithm selects a random sample of m predictors from the full set of p predictors as split

24

candidates. Each tree is grown independently on random samples of the observations.
However, the split on each tree is conducted using a random subset of the features to
decorrelate the trees and explore the model space more comprehensively than bagging.
The prediction accuracy increases with more trees in the forest, enabling the modeling
of multiple decision trees. To achieve this, the bootstrapping technique is utilized. In-
stead of using the entire training data to build a single tree, numerous samples of equal
size are created through sampling with replacement. These samples are then employed
to construct individual trees.

Before building a machine learning model, examining the distribution of classes in
the dataset is essential. Data imbalance is when a dataset has an unequal distribution
of classes. If we train a binary classification model without addressing this issue, the
model will be entirely biased toward the majority class. Furthermore, it affects the
relationships between features.

400000
300000
200000
100000

0

low
high

Figure 20. Class distribution before smote

Figure 20 shows the class distribution for the Google play store dataset. There are
significantly less than popular apps in the google play store. It is necessary to handle
class imbalance to avoid bias and improve the model’s accuracy. Several methods for
handling class imbalance exist, such as undersampling, oversampling, and ensemble
classifier (Chao Chen & Breiman, 2004; James et al., 2014). Undersampling involves
randomly deleting records from the majority class. Oversampling involved generating
synthetic records using sample attributes from minority classes. The prevalent method
used for oversampling is SMOTE, which stands for Synthetic Minority Over-sampling
Technique. This method examines the feature space of the data points belonging to the
minority class and identifies its k nearest neighbors in basic terms. For this project, we
have used the SMOTE method for sampling.

25

X_train, X test, y _train, y test = train_test split(X, ¥, test size = 8.3, random_state=42,stratify=Y)

sm = SMOTE(random state=42)
X_train_smote, y_train_smote = sm.fit_resample(X_ train, y_train)
y_train_smote.value_counts().plot(kind="bar")

<AxesSubplot:>
400000
200000
200000

100000

Figure 21. Class distribution after smote

The dataset was divided into training and testing sets using a 70:30 split and strati-
fied k-fold option. Due to this option, each set contains the same percentage of records
for the target class as the complete dataset. The Smote algorithm was applied only to the
training set. The class distribution greatly improved after applying SMOTE. Approxi-
mately 350k synthetic records were added for the high class to balance the dataset.

The following section evaluates the performance of three machine learning models,
k-nearest neighbors(kNN), support vector machine(SVM), and Random forest model,
on this dataset and after balancing the training dataset using SMOTE. The models used
evaluation metrics such as F1-score, confusion matrix, precision and recall.

3.5.1 Building kNN model

The k-Nearest Neighbor algorithm is a highly effective classification method that can
handle intricate data and is simple to implement. Its functioning involves identifying
the K nearest points in the training set, using their class to predict the classification or
value of a fresh data point. It is crucial to select the k-value sensibly to prevent either
overfitting or underfitting the model, typically by opting for an odd number as the k-
value.

26

neigh = KNeighborsClassifier(n_neighbors=5)
neigh.fit(X_train, y_train)

y_pred_test = neigh.predict(X_test)
print(neigh.predict_proba(X_test))

[[8.2 8.8]
[e. 1.]
[e. 1.]
[e. 1.1]
[6.4 8.5]
[1. e. 1]

get_metrics(y_test, y _pred_test)

Accuracy: ©.9531677826876678, F1 score: ©.7945440860254912, Precision: ©.822809754495443, Recall: @.7681576022383197

precision recall fl1-score support

high e.82 .77 e.79 26091

low @.97 @.98 @.97 195231

accuracy @.95 221322
macro avg .96 @.87 @.88 221322
weighted avg @.95 @.95 @.95 221322

Figure 22. kNN before SMOTE

Figure 22 shows the kNN model trained on imbalanced dataset. It achieved accu-
racy of 95.31%, F1-score of 79.45%. The precision is slightly better than recall.

plot_confusion matrix(y_test, y pred_test,"KNN without SMOTE",neigh)

[[20042 6849]
[4216 198915]]

KNN without SMOTE
175000
! 150000
high
T
a
= 100000
o
2
= 5000
ow E 190815 50000
.. o
high ow

Predicted label

Figure 23. Confusion matrix of kNN before SMOTE

Figure 23 shows the confusion matrix of the kNN model. The Type I error is high
since the number of false positives for the high class is more.

27

from sklearn.neighbors import KNeighborsClassifier

neigh = KNeighborsClassifier(n_neighbors=5)
neigh.fit(X_train_smote, y_train_smote)

y_pred_test = neigh.predict(X_test)
print(neigh.predict_proba(X_test))

[[e.2 e.8]
[e. 1.]
[@.2 8.8]
le. 1.1
[1. e.]
[1. e.]]

get_metrics(y_test, y_pred_test)

Accuracy: ©.9230253214773046, F1 score: 8.7344447423623488, Precision: 8.6248083610218978, Recall: ©.8923766816143408

precision recall fil-score support

high @.62 @.89 .73 26001

low @.98 @.93 @.96 195231

accuracy 8.92 221322
macro avg 6.806 .91 @.85 221322
weighted avg 2.94 @.92 @.93 221322

Figure 24. kNN after SMOTE

Figure 24 shows the kNN model trained on the dataset after balancing it using
SMOTE. It achieved accuracy of 95.31%, an F1-score of 73.73%. The recall is very good
but it has poor precision.

plot_confusion_matrix(y test, y_pred_test,"KNN with SMOTE",neigh)

[[23283 2888]
[14829 181202]]

KNN with SMOTE

hmn iiiiiiiiiiiiillllllIIIIII
o IIIII “IIIII 181202

high ow
Predicted label

180000

160000

140000

120000

100000

80000

True label

60000
40000

20000

Figure 25. Confusion matrix of kNN after SMOTE

Figure 25 shows the confusion matrix of the KNN model. The Type I error is high
since the number of false positives for the high class is more.

3.5.2 Building SVM model

The Support Vector Machine (SVM) is an easy-to-understand algorithm for supervised
machine learning that can be used for classification and regression. SVM works by

28

finding a hyperplane, which is essentially a boundary between different types of data.
In 2D space, this hyperplane is a line. In SVM, each data item in the dataset is plotted
in an N-dimensional space, where N is the number of features or attributes in the data.
Then, the optimal hyperplane is found to separate the data. However, SVM is inher-
ently limited to binary classification, meaning it can only choose between two classes.
Various techniques can be used for multi-class problems to address this issue. For ex-
ample, a binary classifier can be created for each class of data, and the two possible
results of each classifier are whether the data point belongs to that class or not.SVM
can work well with different types of datasets. It is versatile and works well for both
high and low-dimensional data. However it is very computationally expensive for large
datasets.

from sklearn.svm import LinearSvc

svm_clf = LinearSVC()
svm_clf.fit(X_train, y_train)
y_pred_test = svm_clf.predict(X test)

get_metrics(y_test, y_pred_test)

Accuracy: 8.9494582553925954, F1 score: ©.7445185455874292, Precision: 8.9212117786695383, Recall: 8.6246981717833736

precision recall fl-score support

high 8.92 8.62 a.74 26891

low 6.95 6.99 6.97 105231

accuracy 8.95 221322
macro avg 8.94 8.81 8.86 221322
weighted avg B8.95 B8.95 B8.95 221322

Figure 26. SVM before SMOTE

Figure 26 shows the SVM model trained on the imbalanced dataset. It achieved an
accuracy of 94.94%, an F1-score of 74.45%. The precision is much better than recall.

plot_confusion_matrix(y_test, y_pred_test,"SVM without SMOTE",svm_clf)

[[16299 9792]
[1394 193837]]

SVM without SMOTE

175000

150000

.
- 125000
100000
75000
o .. 183837

True label

50000

25000

high ow
Predicted label

Figure 27. Confusion matrix of SVM before SMOTE

29

Figure 27 shows the confusion matrix of the SVM model. The Type I error is high
since the number of false positives for the high class is more.

svm_clf = Linearsvc()
svm_clf.fit(X_train_smote, y_train_smote)
y_pred test = svm_clf.predict(X test)

get_metrics(y_test, y_pred_test)

Accuracy: ©.7524873261582672, F1 score: @.4719185609346984, Precision: ©.3152585699161547, Recall: ©.9381395883638036

precision recall fil-score support

high 6.32 .94 .47 26891

low 8.99 8.73 8.84 195231

accuracy 8.75 221322
macro avg 6.65 6.83 6.66 221322
weighted avg 8.91 .75 .38 221322

Figure 28. SVM after SMOTE

Figure 28 shows the SVM model trained on the imbalanced dataset. It achieved an
accuracy of 75.24%,an F1-score of 47.19%. The recall is much better than precision.

plot_confusion_matrix(y test, y_pred_test,"SVM with SMOTE",svm_clf)

[[24477 1614]
[53166 142865]]

SVM with SMOTE

140000

120000

high
. 100000
i
2 80000
o
g 60000
ow 142068 40000
.- o

high ow
Predicted label

Figure 29. Confusion matrix of SVM after SMOTE

Figure 29 shows the confusion matrix of the SVM model. The Type II error is high
since the number of false negatives for the low class is more.

30

3.5.3 Building random forest model

from numpy import mean

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold
from imblearn.ensemble import BalancedRandomForestClassifier
define model

model = BalancedRandomForestClassifier(n_estimators=18)
model . fit(X_train, y_train)

define evaluation procedure

cv = RepeatedStratifiedKFold(n_splits=18, n_repeats=3, random_state=1)

evaluate model

scores = cross_val score(model, X, Y, scoring="roc_auc’, cv=cv, n_jobs=-1)
y_pred_test = model.predict(X_test)

summarize performance

print(f"Mean ROC AUC: {mean(scores)} , f1 score: {fl1 score(y_test, y pred_test,pos_label="high")}, ")

Mean ROC AUC: @.968629982168072 , f1 score: @.7486888796169213,

get_metrics(y_test, y pred_test)

Accuracy: @.9255383558796685, F1 score: 8.74868@8796169213, Precision: @.6217106896294608, Recall: ©.9488225858449273

precision recall fil-score support

high @.62 @.94 @.75 26091

low 8.99 8.92 8.96 195231

accuracy @.93 221322
macro avg @.81 @.93 @.85 221322
weighted avg 8.95 8.93 8.93 221322

Figure 30. Balanced Random forest model

Balanced random forest classifier randomly undersamples the records in the majority
class and oversamples records from the minority class to balance the data. Figure 30
shows the balanced random forest model built using the google play store dataset. This
model performs well in classifying records from the low class but doesn’t perform well
in classifying records from the high class. Although the accuracy is high for this model,
almost 92.5%, the F1- score is 74.9%.

31

plot_important_features(X_train,list(X_train.columns),model.feature_importances_)

[("Rating®, ©.17780574276579528), ('Rating Count’, ©.6648726628316714), ('Free’, ©.8011966902168452189), ('Price’, ©.08245
03000448852676), ('Size', ©.86602519229291716), {'In App Purchases', ©.821688818656881735), ('Editors Choice', @.800237921
587797433), ('Released_day_of_week’, ©.018585454379599516), ('Adults only 18+", 4.8892322@5585827e-06), (' Everyone', 0.8002
332039430160266), ("Everyone 18+, ©.800892284317327084085), ('Mature 17+', 0.800886832240899385596), ('Unrated’, 1.7177597648
195533e-85), ('num images’, ©.84360382538110288)]

Feature importances using MDI

Sze

In App Purchases fm
I
ges =

Price

Free
y_of_week
Everyone
Unrated

Mean decrease in impurity
e =2 =2 = o
= R B o @
Rating -—
Rating Count | —

Editors Choice
Adults only 18+
Everyone 10+
Mature 17+
num_imay

Released_da)

Figure 31. Important features given by Balanced Random forest model

plot_confusion_matrix(y_test, y_pred test,model_name="Balanced random forrest without SMOTE")
[[24547 1544]
[14936 188295]]

Balanced random forrest without SMOTE

180000
- o
140000

120000
100000
80000

True label

60000
40000
20000

I‘Mgh ow
Predicted label

Figure 32. Confusion matrix of Random forest model before applying SMOTE

The balanced random forest model ranked the important features based on Gini(mean
decrease impurity) after plotting the feature importance for this dataset. We observed
that Rating, Rating Count, Size, No of images, In-App purchases, and released day-of-
week features were found to be important. Figure 32 shows the confusion matrix for

the predictions made by the model. The Type I error is high since the number of false
positives for the high class is more.

32

clf = RandomForestClassifier{n_estimators = 1808,bootstrap = True)
class_names= [str{label) for label in Y.unique().tolist()]

del X

del Y

Training the model on the training dataset
fit function is used to train the model using the training sets as parameters
clf.fit(X_train_smote, y_train_smote)

performing predictions on the test dataset
y_pred_test = clf.predict(X_test)

clf.score(X_test,y_test)

©.9576318666919692

get_metrics{y_test, y pred test)

Accuracy: ©.9576318666919692, Fl score: ©.8249416596658264, Precision: ©.8041784960326126, Recall: ©.8468854118278333

precision recall fil-score support

high ©.808 .85 8.82 26891

low 8.98 8.97 8.98 195231

accuracy 6.96 221322
macro avg 6.89 6.91 6.8 221322
weighted avg .96 .96 .96 221322

Figure 33. Random forest model after applying SMOTE

The random forest classifier performed better than the Balanced random forest clas-
sifier. The accuracy is 95.8%, and F1-score is 82.6%. The random forest model ranked
the critical features based on Gini(mean decrease impurity) after plotting the feature
importance for this dataset. Rating, Rating Count, Size, No of images, Everyone, and
released day-of-week features were found to be important. Figure 35 shows the confu-
sion matrix for the predictions made by the model. The Type I error is lower than, but
the Type II error is higher than in the previous model.

plot_important_features(X train,list(X_train.columns),clf)

[('Rating’, ©.20120491122650508), ('Rating Count’, ©.6038243347916546), ('Free', ©.804531712213285925), ('Price’, ©.@01521
8775649797065), ("Size’, ©.834499326259671385), ('In App Purchases', 8.80308895756652571284), ('Editors Choice', ©.80011865
731493397744), ('Released day of_week’, ©.816053834858373843), ('Adults only 18+°, 5.256300254022098e-86), (' Everyone®, @.
©38326254934261395), ('Everyone 18+', ©.8033180@396466159544), ('Mature 17+", ©.005259503887350514), ('Unrated’, 1.12413834
26332252e-85), (num_images’, ©.08824427466342023)]

Feature importances using MDI

o
o

Mean decrease in impurity
=2 I
t

b

Rating
Rating Count
Free
Price
Size p
y_of_week
Everyone =
Everyone 10+
Mature 17+
Unrated
num_images [

Editors Choice
Adults only 18+

In App Purchases

Released_da

Figure 34. Important features given by Random forest model after applying SMOTE

33

plot_confusion_matrix(y test, y pred test,"Random forrest with SMOTE",clf)

[[21950 4132]
5146 196685]]

Random forrest with SMOTE

. 1

175000
150000
high
125000

100000

True label

75000

50000

25000

F'redlcted label

Figure 35. Confusion matrix of Random forest model after applying SMOTE

3.6 Sentimental analysis of App reviews

In this step, the sentimental analysis of app reviews was performed. Around 8769559
app reviews were extracted from Google Play Store, containing several fields such as
App id, review content, review date, user id of the reviewer, score(rating) given by the
user, and thumbs up count(number of users who found the review helpful). For this
project, the review content and score were used.

3.6.1 Data preprocessing

For this stage, 24000 reviews were selected for analysis from the complete dataset. The
reviews were for apps from different categories. The first step of data cleaning was to
remove the stopwords and punctuation marks from the sentences using apply function.
The second step of the process was to extract individual words by applying the nltk
word_tokenize function to the sentences. Words are like atoms of natural language.
Each word contains some vital information in it to describe objects. Tokenization is
essential since it allows us to analyze the dataset’s word frequency and frequent phrases.
The third step involved lemmatizing the tokens. Lemmatizing reduces words to their
core meaning. E.g., words such as player, playing, and plays become play. The last
step of the data cleaning process involved parts of speech tagging. Each token word
from the content was tagged as a Noun, pronoun, verb, adverb, adjective, preposition,
conjunction, or interjection.

34

3.6.2 Sentimental analysis

The sentimental analysis of reviews was performed using the nltk library’s SentimentIn-
tensityAnalyzer and flair library’s TextClassifier. Both of these are pre-trained classi-
fiers. SentimentIntensityAnalyzer performed well on the dataset by correctly classi-
fying 21300 reviews out of 24000. It identified the polarity of reviews and assigned a
positive, negative, neutral, and compound score depending on the overall sentiment of
the words in the review. If the compound score was more significant than 0.5, then
the review was classified as positive if the score was less than -0.5, then it was labeled
as Negative; and if the score was between -0.5 and 0.5, then the review was classified
as Neutral. Flair TextClassifier classified 18345 reviews correctly. It assigned a score
and Positive, Negative, and Neutral label to each review. The next step after classifying
the reviews was to identify the words/ features associated with positive and negative
reviews and find the frequency of these words in the reviews.

best

need yseful ggg
: S
ﬁ ea S lI'ItE"I’E""tlI'IgC bL'D
Ygreat
%]_ kI far S30°
o new
Ly
v =
= amazmg L

Figure 36. Positive sentiments in reviews

Figure 31 shows frequently occurring words in positive reviews, i.e. reviews with
ascore greater than three stars. The positive reviews consist of compliments for the app.
Some of frequently occurring words are “good” ,”’like”,”best”,’easy”, nice”, ’free”,’graphic”,
ing”,’helpful”, and "useful”. These words indicate that users like the app’s graphics, and
cost and find the app helpful.

TF-IDF or Term Frequency — Inverse document frequency is essential in text analy-
sis. It helps find Bi grams and Trigrams in text. Unigrams help us to find which words
frequently occur in the text, but they do not convey enough information as N-grams.
Bigrams and Trigrams help us to visualize which groups of words are frequently found
together in the text. Analyzing Bigrams and Trigrams would help developers to under-

stand the issues faced and features liked by users.

9

999

amaz-

35

uuuuuuuuu

- - = 13 = = & = e E

(a) popular apps (b) less popular apps

Figure 37. Positive bigrams

(a) popular apps (b) less popular apps

Figure 38. Positive trigrams

Figure 32 depicts the top 25 positive Bi grams and trigrams in popular and less pop-
ular apps. The positive bi grams and trigrams indicate that users find the apps excellent
and user-friendly. There is not much difference in the positive reviews of popular and
less popular apps.

36

stop

pdate

open

=

EFFDF &
|
= on

25; tried LE
[
Uus -

suck download o

aame“

need Problem @ O

_use S = ant
2 like a Sfake
WOrkKilng L}

option

way
hate

Figure 39. Negative sentiments in reviews

Figure 33 shows frequently occurring words in negative reviews, i.e. reviews with a
score of fewer than three stars. The negative reviews consist of user feedback and com-
plaints about the app. Some of the frequently occurring words are “game”,”bad”,”time”

,worst”,”update”, ’error”,”problem”, and “fake”. These words indicate the issues users
face and their overall experience with the app.

g
<

gative bigrams

£l

(a) negative bigrams in popular apps (b) negative bigrams in less popular apps

Figure 40. Negative bigrams

37

((((((((((((((((—

(a) popular apps (b) less popular apps

Figure 41. Negative trigrams

Figures 34 and 34 depict the top 25 negative bigrams and trigrams in popular and
less popular apps. The negative bigrams and trigrams in popular apps indicate that
users face poor customer service and some functionality issues. The negative bigrams
and trigrams in less popular apps indicate that users face issues with error messages
while using apps, app updates, and poor customer service.

3.7 Dashboard for visualization

The Tableau dashboard will be a high-level view of the cleaned and transformed google
play store data. The charts shown in the dashboard will help users to view which cat-
egories are becoming popular. It will also help to view how popular apps change their
size and price over time. The dashboard user can be anyone who wants to deploy apps
on Google Play Store. This dashboard can help developers to compare how their app
compares to other apps in the Play Store and correlate the different attributes to the
number of installs.

Education

Popular categories

Music & Audio Health &
Fitness

Count of App Id
2,7221082,480

Avg. Installs

8,017 993,923

Lifestyle Ratin g
Installs b..
Business | high
Entertainment Social ’_‘ low .
Shopping - o 1 2 3 4
Tools B I
ooks &
o me.E
|
Size
Free/Paid Ad supported Inapp Installs bucket
Free / Installs bu.. AdSupported / I..| | purchases high ow
Paid Free False True : 1500K e
n App Purchases ..
False True
4 4 H
4 o« 1000K |®
g 3 g 3 & &
5 5 g z o]
& = = =<
o S 2 o S00K e
z ¢ e & 2 4
<<
o (=]
1 1 . o
B 0K e Ct&)
O . BN . 0 BN . el B 18 0B 18
J' 8 f”‘ 5 “’ g ;‘ 5 ” 3 ‘J‘ g Maximum Instal..Maximum Insta..

4 Results

The exploratory data analysis done in the previous section helped to understand the

Figure 42. Tableau dashboard

38

relationships between different features in Google. The data analysis was done to find
important features to train the random forest model on the google play store dataset,
perform sentimental analysis and build a dashboard. The model and sentimental ana-
lyzer were built using Python. The exploratory data analysis helped to understand the
effect of different attributes of play store app advertisement such, App name, Content
rating, In-App Purchases, Ad-supported, No of promotional images and videos, Size,
Price, Rating, No of reviews and ratings have on App Installations. Many popular clas-
sifier models were trained on the dataset, such as kNN, SVM, random forest model, and
balanced forest model, using raw and SMOTE data. The following table summarizes
the evaluation of the classifier models trained on the google play store dataset:

39

Table 2. Summary of Classifier model results

Model Name Accuracy F1 score Precision Recall
SVM without SMOTE 94.94% 74.45% 92.12% 62.46%
SVM with SMOTE 75.24% 47.19% 35.52% 93.81%
kNN classifier without 95.31% 79.45% 82.28% 76.81%
SMOTE

KNN classifier with 92.41% 73.73% 62.30% 90.29%
SMOTE

Balanced Random 92.55% 74.86% 62.17% 94.08%
Forest without

SMOTE

Random Forest with 95.76% 82.49% 80.41% 84.68%
SMOTE

The Random forest model with SMOTE-transformed data and bootstrapping per-
forms better than SVM and kNN models after a lot of tuning using different numbers
of estimators.

The sentimental analysis of reviews was done to understand users’ experience with
the apps. NItk library’s SentimentIntensityAnalyzer and flair library’s TextClassifier
were used for sentimental analysis. The TextClassifier performed better than Senti-
mentIntensityAnalyzer. It was observed that popular apps received higher ratings and
compliments from users compared to other apps. The text analysis done during senti-
mental analysis helped to understand the types of issues users face. Users who installed
popular apps frequently faced issues with customer service and fewer issues with func-
tionality. Users who installed less popular apps faced more issues with error messages
while using different app features. After sentimental analysis, a Tableau dashboard was
built using the cleaned and transformed Google Play Store data. This dashboard can be
used by any user who wants to deploy an app on the google play store to understand
what sizing and pricing strategy needs to be used for the apps.

5 Conclusion

The objective of this project was to find important features of a google play store app
that influence users to install the app. Based on the exploratory data analysis, it was ob-
served that Ratings, Rating count, Size, and In-app purchases were important attributes
that affected app installations. The category of apps also influenced app installations.
Gaming apps, educational, music, and tools apps are popular among users. The senti-
mental analysis revealed what users liked about the apps and what type of issues they
faced.

40

5.1 Limitations

As with most studies, this project is subject to the following limitations because of the
limited data available for analysis.

1. The app description couldn’t be evaluated without crowdsourcing to understand
the quality and structure of the description of popular apps

2. The app’s quality of promotional images and videos couldn’t be evaluated.

3. The dataset only contained data about the app at a certain time. The study could
not evaluate how the apps performed over time after being published on Google
Play Store.

4. The sentimental analysis could only be performed on reviews in English. Some
reviews were in regional languages, such as Spanish, so they could not be evalu-
ated correctly.

5.2 Future Work
1. Evaluate the effect of permissions of apps on installations and ratings.

2. Collect data about the privacy policy of popular apps and compare them with
other apps.

3. study the effect of app updates on installations.

4. Evaluate how other classifier algorithms perform on this dataset.

References

Agrawal, S. C., Singh, S., & Gupta, S. (2021). Evaluation of machine learning tech-
niques in sentimental analysis. 2021 5th International Conference on Informa-
tion Systems and Computer Networks (ISCON), 1-5. https://doi.org/10.1109/
ISCON52037.2021.9702430

Carbunar, B., & Potharaju, R. (2015). A longitudinal study of the google app market.
2015 IEEE/ACM International Conference on Advances in Social Networks Anal-
ysis and Mining, ASONAM ’15.

Carrefio, L. V. G., & Winbladh, K. (2013). Analysis of user comments: An approach
for software requirements evolution. 2013 35th International Conference on Soft-
ware Engineering (ICSE), 582-591. https://doi.org/10.1109/ICSE.2013.6606604

https://doi.org/10.1109/ISCON52037.2021.9702430
https://doi.org/10.1109/ISCON52037.2021.9702430
https://doi.org/10.1109/ICSE.2013.6606604

41

Chao Chen, A. L., & Breiman, L. (2004). Using random forest to learn imbalanced data.
(666). https://statistics.berkeley.edu/tech-reports/666

Google. (2021). Support.google.com. get discovered on google play search - play console
help. [Retrieved May 11, 2022, from www.support.google.com website:]. https:
//support.google.com/googleplay/android-developer/answer/44483787hl=en

Henze, N., & Boll, S. (2011). Release your app on sunday eve: Finding the best time
to deploy apps. 13th International Conference on Human Computer Interaction
with Mobile Devices and Services (MobileHCI ’11), 581-586.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical
learning: With applications in r. Springer Publishing Company, Incorporated.

Jiang, H., Ma, H., Ren, Z., Zhang, J., & Li, X. (2015). What makes a good app description?
6th Asia-Pacific Symposium on Internetware INTERNETWARE 2014), 45-53.

Jin, J., & Liu, Y. (2010). How to interpret the helpfulness of online product reviews:
Bridging the needs between customers and designers. the 2nd international work-
shop on Search and mining user generated contents (SMUC ’10), 87-94.

Makaba, T., & Dogo, E. (2019). A comparison of strategies for missing values in data on
machine learning classification algorithms. 2019 International Multidisciplinary
Information Technology and Engineering Conference (IMITEC), 1-7. https://doi.
org/10.1109/IMITEC45504.2019.9015889

MarketWatch. (2022). Mobile enterprise application market growth 2022-2029: In-depth
industry analysis on size, share, cost structure, prominent key players strategies,
global demand, emerging trends, recent developments, future investments and
regional forecast [Retrieved May 11, 2022, from www.marketwatch.com web-
site:]. https://www . marketwatch .com / press - release / mobile - enterprise -
application-market-growth-2022-2029-in-depth-industry-analysis-on-size-
share - cost - structure - prominent - key - players - strategies - global - demand -
emerging - trends - recent - developments - future - investments - and - regional -
forecast-2022-05-04

Play, G. (2022). Meta ads manager. google play [Retrieved May 11, 2022, from www.sup-
port.google.com website:]. https://play.google.com/store/apps/details?id =
com . facebook . adsmanager& % 20hl = en _ IN&gl = USt. google . com / google -
ads/answer/62473807hl=en

Prakash, G. (2021). Google play store apps [Retrieved May 11, 2021, from www.kag-
gle.com website:]. https://www.kaggle.com /datasets /gauthamp10/google -
playstore-apps

https://statistics.berkeley.edu/tech-reports/666
https://support.google.com/googleplay/android-developer/answer/4448378?hl=en
https://support.google.com/googleplay/android-developer/answer/4448378?hl=en
https://doi.org/10.1109/IMITEC45504.2019.9015889
https://doi.org/10.1109/IMITEC45504.2019.9015889
https://www.marketwatch.com/press-release/mobile-enterprise-application-market-growth-2022-2029-in-depth-industry-analysis-on-size-share-cost-structure-prominent-key-players-strategies-global-demand-emerging-trends-recent-developments-future-investments-and-regional-forecast-2022-05-04
https://www.marketwatch.com/press-release/mobile-enterprise-application-market-growth-2022-2029-in-depth-industry-analysis-on-size-share-cost-structure-prominent-key-players-strategies-global-demand-emerging-trends-recent-developments-future-investments-and-regional-forecast-2022-05-04
https://www.marketwatch.com/press-release/mobile-enterprise-application-market-growth-2022-2029-in-depth-industry-analysis-on-size-share-cost-structure-prominent-key-players-strategies-global-demand-emerging-trends-recent-developments-future-investments-and-regional-forecast-2022-05-04
https://www.marketwatch.com/press-release/mobile-enterprise-application-market-growth-2022-2029-in-depth-industry-analysis-on-size-share-cost-structure-prominent-key-players-strategies-global-demand-emerging-trends-recent-developments-future-investments-and-regional-forecast-2022-05-04
https://www.marketwatch.com/press-release/mobile-enterprise-application-market-growth-2022-2029-in-depth-industry-analysis-on-size-share-cost-structure-prominent-key-players-strategies-global-demand-emerging-trends-recent-developments-future-investments-and-regional-forecast-2022-05-04
https://play.google.com/store/apps/details?id=com.facebook.adsmanager&%20hl=en_IN&gl=USt.google.com/google-ads/answer/6247380?hl=en
https://play.google.com/store/apps/details?id=com.facebook.adsmanager&%20hl=en_IN&gl=USt.google.com/google-ads/answer/6247380?hl=en
https://play.google.com/store/apps/details?id=com.facebook.adsmanager&%20hl=en_IN&gl=USt.google.com/google-ads/answer/6247380?hl=en
https://www.kaggle.com/datasets/gauthamp10/google-playstore-apps
https://www.kaggle.com/datasets/gauthamp10/google-playstore-apps

42

Reddy, P. B. P, & Nallabolu, R. (2020). Machine learning based descriptive statistical
analysis on google play store mobile applications. 2020 Second International
Conference on Inventive Research in Computing Applications (ICIRCA),647-655.

Saad, S. M., & Nanath, K. (2020). Investing in applications based on predictive mod-
eling. 2020 International Conference on Data Science, Artificial Intelligence, and
Business Analytics (DATABIA), 1(1), 105-110. https://doi.org/http://doi.acm.
org/10.1109/DATABIA50434.2020.9190301

Taylor, V. F., & Martinovic, I. (2017). To update or not to update: Insights from a two-
year study of android app evolution. 2017 ACM on Asia Conference on Computer
and Communications Security (ASIA CCS ’17), 45-57.

van Buuren, S., & Groothuis-Oudshoorn, K. (2011). Mice: Multivariate imputation by
chained equations in r. Journal of Statistical Software, 45(3), 1-67. https://doi.
0rg/10.18637/jss.v045.i03

Ware, C. (2012). Information visualization: Perception for design. Elsevier.

Wei, X., Gomez, L., Neamtiu, 1., & Faloutsos, M. (2012). Permission evolution in the
android ecosystem. 28th Annual Computer Security Applications Conference.

Zhali, Kristensson, S., Gong, P., Greiner, P., Peng, M., Liu, S., & Dunnigan, L. (2009).
Shapewriter on the iphone: From the laboratory to the real world. Proc. CHI,
20009.

https://doi.org/http://doi.acm.org/10.1109/DATABIA50434.2020.9190301
https://doi.org/http://doi.acm.org/10.1109/DATABIA50434.2020.9190301
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03

	Dedication
	Acknowledgments
	Abstract
	Introduction
	Background
	Dataset
	Objective

	Related Work
	Methodology
	Data Extraction
	Data preprocessing
	Missing value detection and imputation

	Google play store data exploration
	Feature selection
	Building a classifier model
	Building kNN model
	Building SVM model
	Building random forest model

	Sentimental analysis of App reviews
	Data preprocessing
	Sentimental analysis

	Dashboard for visualization

	Results
	Conclusion
	Limitations
	Future Work

	References

