
GCIS-123: Software Development & Problem Solving I

Course Description

This is the first course introducing students to the fundamentals of computational problem solving with a software engineering approach. Students will come into the
course with widely varying skill levels. Some students may have completed a formal computer science course in high school or even at the college level. Others may be
self-taught avid programmers with lots of personal projects. Others will come into the course with little or no prior experience at all! The good news is that this course is
designed with all skill levels in mind. Experienced students should be introduced to new topics and new ways of thinking as they solve problems. Beginning students will
learn the fundamentals of computer literacy and programming as they steadily build and hone their skills.

Yes, this is an introductory programming course, during the course of which students will learn one of the most popular and widely used contemporary programming
languages: Python. However, much more important than learning any one programming language will be the development of problem-solving skills; we will use an
algorithmic approach to solve computing problems of varying scale; you will learn how to solve large computing problems incrementally by breaking them into small
pieces that can be solved individually with the tools that you have learned in class. Problem-solving and programming are difficult things to do and require persistence!
Your first attempt won’t always work and that is OK. The important thing is that you take the time and put in the effort to learn from the experience so that you can
increase your knowledge, understanding, and skills.

There will also be an emphasis on good software engineering practices including software design principles, unit testing, design patterns, and version control. Students
that complete this and the second course in the sequence will be well prepared to tackle the most challenging computing courses throughout the rest of their college
education.

Course Topics

The following topics will be covered primarily during lectures:

1. Statements, expressions, variables, standard output/input
2. Types, variables, functions, parameters, arguments
3. Arrays, Boolean expressions, conditionals, iteration
4. File I/O, raising exceptions, exception handling
5. Basic string parsing, regular expressions
6. Arrays, recursion, searching, sorting
7. Classes, objects, constructors, fields, methods

The following topics are introduced and reinforced in every assignment through practice.

1. A systematic approach to computational problem solving using software engineering including informal and formal approaches to problem solving
2. Algorithmic thinking, computational problem solving

Course Objectives

Learn to program in a selected, contemporary, high-level programming language (Python).
Describe and apply problem-solving skills, algorithms, and data structures that are appropriate to solve a variety of computing problems of varying degrees of
complexity.
Describe and apply fundamental concepts of software engineering including understanding needs, software design, solution testing, and incremental development.
This course is the first in a two-course introductory sequence that is a prerequisite for many later courses. The prerequisite for enrolling in the second course in the
sequence is a minimum grade of C-.

Office Hours

Every instructor holds office hours on specific days and times each week for the sole purpose of supporting their students. No appointment is necessary to visit your
instructor during these scheduled office hours. There is no set agenda or prerequisite of any kind for visiting! Students are free to stop by and ask for help on coursework,
but also just to chat about anything at all including personal projects, resume writing, applying for jobs, hobbies, and so on. Visiting your instructor's office hours often is a
great way to get to know them, and every instructor enjoys it when their students stop by. You can find your instructor's office hours in their Content section on
MyCourses. If your instructor's office hours do not fit your schedule, you should email and request an appointment.

While it's OK to visit your instructor just to chat, if you are looking for help with your coursework, it is always best to come prepared.

At a minimum, you should prepare a list of questions that you would like to ask; consider writing or typing these questions in advance.
If you would like help solving a problem in a program that you have written, make sure that your laptop is charged, and that your program is open and ready to
review.
Be prepared to answer the following questions:

What did you expect to happen?
What actually happened?
What have you tried to solve the problem yourself?

Other Resources

In addition to your instructor, there are many resources available to help you. These resources are provided because we understand that programming can be challenging
and sometimes requires significant effort. It is important that you utilize these resources to support your work in learning and understanding the course material.

The lecture slides and class activities are excellent resources because they contain all of the information and examples you need to build on to complete your out of
class assignments. Try spending 30 minutes after each lecture reviewing the content and practicing the coding activities. If you are unable to solve one of the
activities without looking at the solution, try asking your instructor or course assistant for help.
Many of the Course Assistants hold virtual mentoring hours on the course Discord server. These mentoring hours are open to all students in the course and can be
used to seek help on your coursework. You can voice chat with the Course Assistant and share your screen. See the #waiting-room channel for the posted

http://www.se.rit.edu/
http://www.se.rit.edu/


schedule of hours.
A discussion topic will be created on the course Discord server for each assignment. Ask questions! Everyone is here to learn and chances are you aren’t the only
one with that question! The course staff (and maybe even other students) will provide you with answers and advice.
The Society of Software Engineers (SSE) holds open mentoring hours every weekday. You can find the schedule on the SSE site.
Women in Computing (WiC) offers tutoring for many classes in GCCIS. You can find the schedule on the WiC site.
Tutoring support for GCIS 123/124 will be provided in the GCCIS Tutoring Center (GOL-2410, 2nd floor overlooking the atrium). The schedule can be found on
the GCCIS Tutoring Center site. Tutoring for your other GCCIS classes may also be available. The Academic Success Center provides Math and Physics Tutoring,
as well as other academic-related support.

Grading

Component Percentage of Grade
Quizzes 5%
Class-Activities 10%
Problem Solving 10%
Assignments 25%
Practica 30%
Final Exam 20%

Each student's grade is based on a series of artifacts and deliverables that are evenly distributed throughout the semester. All grades are expected to be returned to students
within 1-2 weeks of the submission date, and so all students should be provided with an accurate representation of their current standing in the course at all times in the
MyCourses grade book. This grade book also includes written feedback from graders that should give you a good idea of the strengths in your submission and specific
areas for improvement. It is expected that you will review this feedback, so that you may learn from it to improve your knowledge, understanding, and skills.

Every student can succeed in this course, but you will need to be proactive in seeking help and avail yourself of the resources provided to help you learn. Students that feel
that they are lagging behind mid-semester will have ample opportunities to recover if they increase participation during lecture by making sure to arrive early to take
quizzes, complete the in-class coding activities, and actively participate in the team problem solving. Of course, it is also important to seek help on the out-of-class
assignments!

This course is the first in a year-long introductory sequence. The prerequisite for enrolling in the next course in the sequence is a minimum grade of C-.

Daily Quizzes
At the start of each lecture, your instructor will provide you with the password necessary to access that day's quiz. Each quiz includes a series of questions based on topics
covered in the previous lecture. The goal of the daily quizzes is twofold: first, to encourage you to arrive on time to class each and every day, and second to refresh your
memory about the topics that were covered previously. If there are any questions that you are unsure about, be sure to make a note and ask your instructor during lecture!

Quizzes are graded based on participation. Provided that the student completes the quiz in the first 5 minutes of class, they will receive full credit for that quiz. At the same
time, the questions on the quizzes will be very similar to the questions on the written portion of the midterm and final exams. You would take the quizzes seriously, and
ask questions if there is something on a quiz that you do not understand.

Class Activities
Each lecture includes 10-15 hands-on active learning activities designed to provide students with an opportunity to practice as they learn new topics in the course. Students
are expected to spend about 2-5 minutes working independently on the activity. The goal is not necessarily to completely solve every activity within this short period of
time but to think about how to apply what you have just learned to a potential solution. One technique is to try to write your solution as a "recipe" in the form of comments
in your code. Course Assistants are available in the classroom to assist students during these activities. After enough time has passed to give everyone an opportunity to
think about the problem, your instructor will go over the solution before moving on.

Class activities are graded based on participation. Graders will be looking for signs of obvious effort, including at least an attempted solution to each activity and frequent
commits to source control throughout the lecture. Students that demonstrate such effort will receive full credit for the class activities.

Problem Solving
The last 60 minutes of class on some days will be devted to team problem solving, during which students are placed into teams of 3-4 by their instructor and presented
with a series of problems to solve together. The problems are typically directly related to that day's homework assignment. Every student on the team is expected to
contribute to the team's solution. Course Assistants and your instructor will be available to assist.

Problem solving is graded based on participation. Students should contribute to their team's solution by actively engaging in the discussions and taking turns writing the
team's solution on the whiteboard or paper. Provided that a student is present and contributing to their team's solution, they will receive full credit.

Homework Assignments
Homework will be assigned at the end of most classes and is due before the start of the next class. The homework assignments provide students with an opportunity to
practice what they learned during that day's lecture to solve problems that are significantly larger and more complex than the activities practiced during class. The lecture
and class activities will have included everything that you need to solve your homework assignments - it is a good idea to look for problems that are similar and try to
adapt the solutions to your homework. Students will have a minimum of two days to complete each assignment.

Homework assignments are graded based on the following rubric, which evaluates effort and adherence to instructions.

Exceptional
Performance

Competent
Performance

Acceptable
Performance

Developing
Performance

Beginning
Performance

Needs
Improvements

Unacc
Perfor

5 (100%) 4 (95%) 3 (88%) 2 (75%) 1 (50%) 1 (25%) 0 (0

The solution is
complete and

The solution is
functionally

The solution
includes at least

The solution
includes at least

The student
began the

The solution shows
some evidence of

Little or 
Almost 

https://sse.rit.edu/
http://women.rit.edu/tutoring.php
https://www.rit.edu/computing/tutoringcenter
https://www.rit.edu/computing/tutoringcenter#services
https://www.rit.edu/academicsuccesscenter/


Exceptional
Performance

Competent
Performance

Acceptable
Performance

Developing
Performance

Beginning
Performance

Needs
Improvements

Unacc
Perfor

5 (100%) 4 (95%) 3 (88%) 2 (75%) 1 (50%) 1 (25%) 0 (0
correct.

Instructions were
followed

completely.

or

The student made
a small number of
minor errors for

the first time, e.g.
wrongly named
files, output that
does not match
specifications,
etc. A warning

should be issued
regarding any

errors.

complete other
than a small
number of

functional errors.
Instructions were

followed
completely.

or

The solution is
complete and
correct but the
student made a

small number of
errors that they
heve made at

least once before,
e.g. wrongly
named files,

output that does
not match

specifications,
etc. An

explanation
should be issued
regarding any of

these errors.
Instructions were

followed
completely.

80% of the
required

functionality and
all instructions

have been
followed.

or

The student's
effort is obvious

based on the
volume of work

and commit
history, but there

are a modest
number of errors
that range from
relatively minor

to significant that
can be easily

fixed by a
member of the

course staff with
minimal effort.

50% of the
required

functionality and
all instructions

have been
followed. The
student's effort

based on volume
of work and

commit history is
obvious. There is

at least some
attempt to

implement the
missing

functionality.
Errors can be

easily fixed by a
member of the

course staff in a
short amount of

time.

solution, and
there is obvious
effort, but more
than 50% of the

required
functionality is

missing or
broken. This may
include code that
exists but does

not compile
and/OR run, but
could be fixed

with significant
effort.

effort but does not
demonstrate the
desired learning

outcomes.

Less than 50% of
the required

functionality is
working.

There are serious
errors that require
significant effort to
fix including code

that does not
compile or that
crashes when

executed.

requ
functio
missin

commi
shows v
activity 

of the 

What should I do if I get this grade?

You got full
credit!

But you should
still read the

feedback from
your grader!

You may have
made one or more
small errors that
will lower your
score on future
assignments if

they are not
corrected.

So close!

But you may
have made one or
more small errors

and not for the
first time, e.g.

forgetting
comments, not
following style
guidelines, etc.

Be sure to read
the feedback

from your grader
on this and
previous

assignments!

The solution is
very close, but

some minor
functionality is
missing and/or

you may not have
followed the
instructions.

Be sure to
carefully read the

feedback from
your grader to

understand why
you didn't get a
higher score this

time.

Also, always
make sure to read

the assignment
instructions
carefully!

An extremely
solid start, but

significant
required

functionality is
missing.

Read the
feedback from

your grader
carefully!

Make sure to give
yourself enough
time (2-4 hours)
to work on the

assignment.

Plan to work
before or during a

time when you
can seek help

from your
instructor's office

hours and/or
virtual mentoring

hours on the
course Discord

server.

A solid start, but
significantly more
work is needed.

Try to get started
earlier.

Make sure to
allocate plenty of

time.

Review lecture
materials and

practice in-class
activities without

looking at the
answers.

Plan to work
before or during a

time when you
can seek help

from your
instructor's office

hours and/or
virtual mentoring

hours on the
course Discord

server.

You appear to be
struggling with the

fundamental
concepts that the

assignment is
meant to

demonstrate.

Seek help from
your instructor or
course assistants

during office hours.

You should
consider reviewing
the material from
this and previous

units and practicing
the class activities.

You d
submit a

to this as
or the so

you did
was

incom

Try to g
ear

Make 
allocate 

tim

Review
materi

practice
activ

Plan t
before o

time w
can se

from
instructo

hours
virtual m

hours
course 

ser

Midterm Exams
There will be three midterm exams throughout the semester, each of which is worth 10% of the final grade. Each exam will comprise two parts: a practicum (worth 70% of
the grade) and a written exam (worth 30%). In general, these exams are not cumulative and will instead focus on the material covered since the previous exam. Students
will be given the entire class period to complete both parts of the exam and may divide the time as they see fit.

The practicum is designed to assess whether or not you have sufficiently developed the expected skills up to that point in the semester. Each practicum will comprise
several questions, each of which will be graded using the standard assignment grading rubric. Your grade will be the average of the grades on the individual problems.



Several of your homework assignments will be "mini-practica" that will help you to assess your readiness for each practicum. You should practice solving the problems on
each mini-practicum within a set time, e.g. 15-30 minutes per problem, without consulting your notes.

The written exam is designed to assess your comprehension of conceptual topics that are difficult to test in a practicum. The questions on these exams will be similar to
those on the daily quizzes. The written component is graded based on correct answers to the questions. The questions on the written portion of each exam will be similar to
those on the daily quizzes, and so you can use the daily quizzes to assess your readiness for this part of the exam.

Final Exam
The final exam comprises two parts: a practicum and a written exam, each of which is worth 50% of the grade. The final exam will be cumulative but will emphasize more
recently covered topics that were not included in previous exams. Students will be given the entire exam period to complete both parts and may divide the time as they see
fit.

The practicum is designed to assess whether or not you have sufficiently developed the expected skills up to that point in the semester. Each practicum will comprise
several questions, each of which will be graded using the standard assignment grading rubric. Your grade will be the average of the grades on the individual problems.

The written exam is designed to assess your comprehension of conceptual topics that are difficult to test in a practicum. The questions on these exams will be similar to
those on the daily quizzes. The written component is graded based on correct answers to the questions.

10% Final Grade Rule
One of the key learning outcomes for Software Development & Problem Solving is that each student develops a minimum baseline of programming and software
engineering skills. A student that has not demonstrated a baseline level of skill in these areas should not receive a passing grade the course.

The midterm and final exams are your opportunity to demonstrate that you have mastered the learning objectives of the course. You will need to demonstrate a practical
application of your skills with minimal outside assistance.

Because of this, your final grade in the course will be limited to no more than 10% higher than your exam average.

For example, a student with an exam average of 64.5% cannot receive a grade higher than 74.5% (even if their overall average including assignments and activities is
higher).

Resources

1. Provided Materials (lecture notes, assignments, code examples, etc.).
2. Recommended Text Books:

a. The Pragmatic Programmer
b. Learning Python, 5th Edition

3. Online resources.
a. Python Web Site
b. Python Online Documentation
c. Project Euler
d. Git Documentation

Grading Scheme

Letter Grade Percentage Range
A >=92%
A- >=89%
B+ >=86%
B >=82%
B- >=79%
C+ >=76%
C >=72%
C- >=69%
D >=59%
F <59%

Please note that, given the number of students taking the course in any given semester, a fair and equitable rounding policy has been built into the grading scheme. For
example, in many courses a student earning a 69% would receive an D, but in this course the student would receive an C-. For this reason, the course policy states that the
above grading scheme is strictly applied and no additional rounding of grades will be performed.

This course is the first in a year-long introductory sequence. The prerequisite for enrolling in the next course in the sequence is a minimum grade of C- in this course.

Tips for Success

Spend ~30 minutes reviewing the lecture materials before starting the homework assignments. Practice the coding activities to see if you can solve them without
looking at the answers. If you cannot solve one or more problems, ask for help!
Read the assignment fully before asking for help! Make a note of instructions that raise questions for you. Visit your instructor during their office hours, or ask
questions in the assignment channels or during virtual mentoring hours on the course Discord server.
Do not try to solve a large problem all at once. Divide the problem into smaller parts and solve each one individually, building a solution incrementally.
Refer to your team's problem solving solution! Take a picture at the end of class!
If you're not sure how to do something, look for a similar example in the class activities.
Understand that you have the tools that you need to solve the problem; the skills you are developing will help you recognize which tools can be used to solve which
problems.

Academic Honesty

https://www.python.org/
https://docs.python.org/3/
https://projecteuler.net/
https://git-scm.com/doc


RIT’s Academic Integrity Policy defines the basic forms of academic dishonesty (cheating, duplicate submission, and plagiarism) and explains the official RIT policy
regarding academic dishonesty.

Apart from the problem solving activity during lecture, all work in this course is individual. All other quizzes, in-class activities, assignments, and practica are expected to
be the result of individual effort, not teamwork or collaboration. Students are permitted to discuss class activities and assignments with other students provided that it is
not at a level of detail that results in more than one student writing identical solutions. In other words, high level discussion of topics, approaches, or algorithms with other
students are acceptable, but low level implementation details (such as line-by-line descriptions of a solution) are prohibited.

Submitting work that was authored all-or-in-part by another individual is considered a violation of academic honesty. Conversely, providing all-or-part of a solution to
another student is also a violation of academic honesty. If a student is suspected of cheating, the instructor shall notify the students involved and conduct an investigation
in accordance with RIT's Academic Integrity Policy.

If the investigation conducted by the instructor determines that the student violated RIT's Academic Integrity Policy, the minimum penalty is a 0 for the assignment on
which the student cheated. Multiple and/or egregious violations will result in a failing grade in the course and a note in the student's permanent record. Subsequent
offenses (e.g. in later courses) will be treated as additional instances of academic honesty and may result in a failing grade in the course (even for a single offense) or
expulsion from the program or university.

AI Code Generation

Using software tools to automatically generate all or part of the solution to an assignment in this course is a violation of the academic integrity policy. As stated above, the
minimum penalty for the first violation is a 0 on the assignment. Any subsequent violations will result in an F in the course.

Using such a tool to generate all or part of the solution to an exam question is an egregious violation of the academic integrity policy. The minimum penalty for the first
offense is an F in the course.

https://www.rit.edu/academicaffairs/policiesmanual/d080

