
1

	

				 	 	 	 	 	 	 	 	 	 										 	

	

	

Online Bookstore for a Customer-to-Customer E-commerce
Web Application

CAPSTONE PROJECT

School of Information

CHAIR

Prof. Bryan French

 COMMITTEE MEMBER

Prof. JOHN-PAUL TAKATS

PROPOSAL BY

Kheman Garg

	

	

2

3

Table of Contents
1.	ABSTRACT ... 5

KEYWORDS:	E-commerce,	Used	Book	system,	Full	Stack	application,	Rental	Services 5

2.	INTRODUCTION .. 6

3.	PROBLEM	STATEMENT .. 7

4.	FUNCTIONALTIES: .. 8

4.1	List	of	functionalities: .. 8

4.2	What	makes	it	unique	from	other	Competitors? ... 8

5	LITERATURE	REVIEW ... 9

5.1		Intelligence	design	of	a	web	application	for	customer	to	customer	training: 9

5.2		Bookland	–	Android	application	for	rental	books: ... 9

5.3	Online	E-book	store	web	design: ... 10

6.	METHODOLOGY .. 10

6.1	Architecture .. 11

6.2	Tools	and	Technologies .. 12

7.	RESULTS .. 17

8.	FUTURE	WORKS ... 27

9.	CONCLUSION ... 28

9.	REFERENCES ... 29

	

	

	

	

	

	

	

	

	

	

4

TABLE	OF	FIGURES	

Figure	1.	System	Architecture	[3] .. 10
Figure	2	Client	Server	Architecture .. 11
Figure	3	MVC	Architecture .. 12
Figure	4	MEVN	Technology ... 13
Figure	5	Vuex	Store	Management	System .. 15
Figure	6	Stripe	Dashboard .. 16
Figure	7	Algolia	Dashboard .. 17
Figure	8	Dashboard .. 18
Figure	9	Sign-In	and	Sign-up	Page ... 18
Figure	10	Add/Edit	Address	Page ... 19
Figure	11	Checkout	Page ... 19
Figure	12	Browsing	History	Page .. 20
Figure	13	Review	System	Page ... 20
Figure	14	Orders	Page ... 21
Figure	15	Admin	Page	Dashboard ... 21
Figure	16	Folder	Structure	of	the	application ... 22
Figure	17	User	Model ... 23
Figure	18	Authentication	Endpoint .. 24

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

5

1.	ABSTRACT	

The	 facility	 to	 carry	 out	 quick,	 safe,	 and	 economical	 processes	 are	 the	 invention	 of	 e-commerce	

applications.	 Customer-to-customer	 trading	 of	 goods	 and	 services	 is	 a	 new,	modern,	 and	 rapidly	

growing	 in-demand	 type	of	 e-commerce	 application.	RentBooks	 is	 a	monolithic	 architecture	web	

application	that	will	provide	peer-to-peer	book	rental	services	and	with	the	ease	of	purchasing	as	

well	as	selling	books	at	a	cheap	price.	With	all	the	academic	and	cost	of	living	fees,	students	already	

feel	burdened,	and	rather	than	buying	new	books	every	single	term	they	can	easily	buy	them	from	

other	 students	 for	 rental	 at	 a	 cheaper	price	 across	 the	 campus.	The	books	 are	not	 bound	 to	 just	

academics,	 but	 they	 also	 contain	 diverse	 genres	 of	 books	 along	 with	 the	 reviews	 written	 by	

customers.	[1]	This	project	can	help	solving	the	problem	for	students	by	helping	them	to	learn	about	

the	 book	 before	 purchasing	 it	 and	 read	 a	 plethora	 of	 books	 at	 a	 cheap	 price,	which	 can	 help	 in	

boosting	their	knowledge	and	they	can	also	gain	money	out	of	this	web	application.	The	system	is	

implemented	using	Nuxt.js	and	Node.js	whereas	the	database	used	is	MongoDB	which	is	a	NoSQL	

database	on	MongoDB	Atlas	which	is	a	multi-cloud	database	service	accessible	from	anywhere	in	the	

world	and	it	is	tested	on	both	Google	Chrome	and	Mozilla	Firefox.		

KEYWORDS:	E-commerce,	Used	Book	system,	Full	Stack	application,	Rental	Services	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

6

2.	INTRODUCTION	

Advancement	in	the	internet	industry	has	given	birth	to	some	amazing	new	businesses,	one	of	which	

is	known	as	e-commerce	where	a	company	sells	a	product	to	its	consumers	via	online	method.	E-

commerce	 started	 working	 because	 of	 the	 electronic	 data	 exchange	 which	 was	 invented	 when	

companies	were	trying	to	get	paperless	offices.	Nowadays	new	e-commerce	applications	are	taking	

place,	 and	 one	 of	 which	 includes	 direct	 customer-to-customer	 trading	 for	 different	 goods	 and	

services.	Different	social	media	companies	have	opened	features	like	a	marketplace	to	sell	and	buy	

abundant	material.	In	my	opinion,	there	is	a	great	need	for	such	an	application	where	the	items	are	

easily	exchanged	or	traded	within	a	small	community	like	a	university.	There	are	famous	websites	

like	eBay	or	Amazon	but	they	act	on	a	large	scale	rather	than	focusing	on	smaller	groups.	

	

This	project	focuses	on	a	customer-to-customer	book	rental	application	built	using	a	modern	tech	

stack	of	Nuxt.js,	Node.js,	and	MongoDB.	This	tech-stack	helped	in	making	a	web	application	that	fulfill	

needs	like	modern,	fast,	and	reusable.	Hence	this	project	can	be	further	explored	to	convert	it	into	a	

microservices	architecture	in	future.	The	application	has	two	types	of	users:	admin	and	consumer	

where	consumer	can	buy	or	sell	items	and	admin	can	control	the	list	of	users	and	can	add	products,	

type	of	product	and	owners.	To	maintain	the	security	of	the	application	the	accounts	are	verified	by	

sending	an	email	to	user’s	account	that	will	need	to	be	confirmed	by	the	user	in	order	to	sign	up.	Then	

the	 project	 further	 uses	 the	 JSON	 Web	 Tokens	 (JWT)	 in	 order	 to	 secure	 the	 password	 hence	

improving	 the	 security.	 Another	 feature	 that	 bolsters	 the	 security	 of	 application	 is	 addition	 of	

sanitization	 and	validation	of	 inputs	 after	 the	 end	user	 submits	 any	 type	of	 form.	This	 project	 is	

creating	 a	payment	 gateway	using	 the	 Stripe	Application	Programming	 Interface	 (API).	 Since	 the	

payment	 is	 a	 transactional	 feature,	 therefore,	 currently	 the	 Stripe	 is	 used	 to	 work	 on	 only	

development	mode	but	with	the	ease	of	changing	to	production	mode	by	just	replacing	the	API	key.	

	

The	application	is	a	user-friendly	and	attractive	in	the	design	along	with	the	use	of	proper	validations	

on	 the	 form	to	prevent	errors	 in	data.	The	design	of	 the	application	 is	 inspired	 from	the	amazon	

website.	These	validations	along	with	the	sanitization	of	data	is	provided	in	the	back	end	as	well	for	

security	and	data	integrity.	A	search	bar	is	also	used	to	ease	users	in	finding	their	desired	book	easily	

along	with	the	 location.	This	search	bar	 is	built	using	the	Algolia	API	which	is	not	only	helping	in	

filtering	 the	results	but	also	collecting	data	on	search	results	and	generating	 it	 in	 the	Algolia	app	

which	can	be	used	to	improve	the	application	and	books.	Features	like	recently	viewed	items	has	

been	 established	 to	 help	 users	 to	 select	 the	 product	more	 easily.	 Another	 feature	will	 be	 to	 give	

ratings	and	reviews	to	the	books	which	help	users	to	identify	if	the	product	is	right	for	them.	In	order	

to	learn	more	about	the	book	and	to	help	in	selling	price	recommendation	there	is	a	section	which	

7

requires	just	the	ISBN	number	which	can	be	found	inside	the	book	that	will	help	in	finding	the	book	

in	open-source	openlibrary.org	that	will	fetch	the	results.	This	would	help	them	in	easily	finding	the	

desired	books	and	reading	 them	at	a	cheaper	price	or	earn	money	on	selling	books	on	rent.	This	

application	can	help	in	reducing	the	waste	by	reusing	the	same	books	by	different	number	of	people.	

	

Even	though	there	are	pool	of	opportunities	to	extend	this	application,	one	important	thing	to	keep	

in	mind	is	the	privacy	and	security	concerns	for	an	application.	[4]	These	concerns	will	be	discussed	

in	detail	to	make	sure	the	growth	of	the	bookstore	application.	

	

RentBooks	is	using	the	monolithic	architecture	for	this	project,	meaning	all	of	the	application	will	be	

stored	 in	 a	 single	 codebase.	 In	 my	 opinion,	 this	 architecture	 is	 specifically	 preferred	 over	

microservices	for	initial	development	because	it	will	be	simple	to	develop	and	deploy	a	single	unit	

rather	than	making	a	huge	application	in	multiple	parts	and	maintaining	different	codebases.	There	

are	some	advantages	that	microservices	provide	like	high	scalability	and	loosely	coupled	code.	It	is	

easier	to	add	functionalities	and	use	multiple	tech	stacks	while	choosing	microservice	architecture.	

However,	in	my	opinion,	a	microservices	architecture	application	is	difficult	to	build	and	maintain	

for	a	single	developer	and	it	is	easier	to	start	with	the	monolithic	architecture.	Therefore,	in	the	future	

if	the	application	grows	in	popularity	and	more	functionalities	or	new	services	can	be	added	to	this	

project,	then	this	application	can	be	converted	into	microservices.	

	

	

	

	

	

	

	

	

	

	

	

	

	

3.	PROBLEM	STATEMENT		

8

In	contemporary	times	there	are	a	lot	of	new	web	applications	that	deal	with	real-life	situations	and	

make	things	easy	for	people	in	different	ways.	There	are	times	when	a	person	has	a	book	and	after	

some	time	that	book	is	useless	to	them	and	just	throw	away	the	book.	Instead	of	that,	it	can	be	reused	

by	someone	else	through	this	web	application	who	otherwise	would	have	purchased	the	same	book	

from	a	retailer	at	a	high	price.	While	purchasing	from	the	retailer	they	might	not	know	the	review	

about	the	book	but	while	using	this	application	this	issue	can	be	resolved	as	there	is	a	review	as	well	

as	rating	system	on	books.	These	books	can	be	further	sold	to	other	customers	using	this	application,	

hence	making	it	cheap.	Even	though	there	are	libraries	in	the	college	to	borrow	books,	they	provide	

limited	supply	of	books	as	there	 is	a	restriction	on	number	of	books	a	student	can	borrow.	Other	

sources	of	purchase	like	amazon	and	eBay	act	at	a	large	scale	and	not	university-based	small	clusters.	

So,	in	my	opinion	there	are	fewer	options	or	fewer	chances	to	have	the	same	book	that	is	required	at	

the	specific	college.	

4.	FUNCTIONALTIES:	

4.1	List	of	functionalities:	
	

1.	Email	verification	for	the	new	user	on	sign-up	to	help	bolster	the	security.	

2.	Created	separate	admin	and	client	applications	to	separate	them	from	each	other.	

2.	Users	can	buy	books	at	rent	or	full	price.	Also,	sellers	can	sell	books	at	prices	generated	from	book	

lookup	system.	

3.	Implemented	a	book	lookup	system	to	help	sellers	in	pricing	the	book	and	learn	about	the	book.	

4.	Created	a	payment	gateway	for	customers	to	buy	books	using	the	Stripe	API.	

5.	Implemented	Algolia	search	to	collect	data	on	searches	being	made	in	order	to	improve	application	

for	future.			

6.	Built	a	recent	watched	products	system	to	help	customers	with	a	better	customer	experience.		

	

4.2	What	makes	it	unique	from	other	Competitors?	
	
A	Book	lookup	system	will	be	one	of	the	main	features/functionalities	that	will	help	differentiate	this	

application	from	the	other	apps.	It	is	common	to	see	selling	prices	go	out	of	proportion	on	eBay	while	

selling	used	products.	It	 is	really	important	to	curb	this	problem	which	most	of	the	websites	lack.	

This	application	will	have	a	section	of	price	comparison	where	users	can	go	and	search	for	the	book,	

they	are	about	to	sell	to	check	the	selling	price	from	other	websites	and	figure	out	the	right	selling	

price	for	the	book.	

There	are	2	ways	to	apply	price	comparison	which	will	be	explored	while	building	the	project:	

9

1.	Web	Scraping:	This	 is	 the	cheapest	way	and	 it	gives	most	of	 the	control	 to	how	or	what	data	

someone	needs.	This	can	be	done	by	either	building	a	web	scraper	bot	or	using	third-party	libraries.	

2.	Product	feeds	from	APIs:		Nowadays,	most	of	the	big	e-commerce	applications	have	open-source	

APIs	which	can	be	used	for	personal	applications.	They	are	easy	to	use	as	they	solve	the	complexity	

which	will	be	seen	in	scrapping.	The	caveat	for	this	is	it	can	be	expensive	as	it	costs	after	exceeding	

free	API	calls	which	vary	for	different	APIs.		

5	LITERATURE	REVIEW	

5.1		Intelligence	design	of	a	web	application	for	customer	to	customer	training:	
	

It	 discusses	 the	 student	 trade	application	built	 for	 students	who	perform	consumer-to-consumer	

trading	using	the	internet.		These	items	include	books,	household	items,	and	electronics,	and	sports	

services.	Different	algorithms	are	tried	and	used	to	improve	the	price	rate	for	the	book	when	it	goes	

up	for	trading.	Besides	setting	the	price	this	paper	also	talks	about	the	different	recommendation	

systems	 in	 the	 application	 that	 can	 be	 used	 to	 improve	 sales	 by	 forming	 the	 previous	 purchase	

pattern	made	by	the	user.	Three	methods	can	be	used	to	build	a	recommendation	system,	i.e.	content-

based,	collaborative	based	and	hybrid-based.	Content-based	will	be	the	recommendation	of	products	

based	 on	 the	 previous	 searches	 that	 the	 user	 has	 made	 while	 collaborative-search	 is	 the	

recommendation	of	 the	products	 that	 the	other	users	have	 searched	with	 similar	 characteristics.	

Hybrid	as	the	name	suggests	is	the	mix	of	both	content-based	and	collaborative-based.	So,	to	improve	

the	 application	 this	 paper	 suggests	 a	 recommendation	 system	 for	 buyers	 that	 provide	 real-time	

searches	and	related	items	in	the	marketplace	to	come	up	with	a	price	for	a	sale	item.	On	the	other	

hand,	a	buyer	can	express	interest	in	the	products	if	they	are	related/desirable	to	their	needs.	Hence	

in	the	end	making	the	consumer-to-consumer	application	more	intelligent	and	more	user-friendly.	

[2]	

	

	

5.2		Bookland	–	Android	application	for	rental	books:	
	

An	 Android	 application	 built	 for	mobile	 discusses	 the	 implementation	 of	 the	 bookstore	 and	 the	

system	design	that	was	used	to	build	the	application.	This	paper	discusses	what	architecture	they	

followed	to	build	the	application	and	the	features	that	they	injected	into	the	application.	The	most	

important	thing	 in	this	paper	that	can	be	seen	 is	 the	 flow	of	 the	user	 from	user	 login	to	payment	

gateway	and	further	deleting	the	number	of	books	available.	This	flow	chart	is	necessary	to	build	to	

learn	the	flow	of	how	the	user	will	interact	with	the	application	and	hence	help	in	making	it	user-

10

friendly.	There	are	the	database	model	and	tables	that	are	discussed	in	detail	which	can	be	used	to	

form	the	relational	database.	[3]	

	
Figure	1.	System	Architecture	[3]	

	

5.3	Online	E-book	store	web	design:	
	

Another	 research	paper	discusses	 each	page	 and	 its	 functionality	 in	 the	bookstore	 application	 in	

detail.	 The	 proposed	 design	 in	 this	 paper	 talks	 about	 how	 the	 authorization	 can	 be	 built	 among	

different	parts	of	the	application	and	how	the	database	gets	updated	on	each	entry	that	is	being	made.	

It	also	discusses	in	detail	what	functionalities	admin	inherit	like	adding	or	removing	a	book	from	any	

user.	[1]	It	shows	excellent	user-friendly	interfaces	and	database	management	ideas	that	can	be	used.	

Security	of	the	database	can	be	improved	if	the	admin	will	be	able	to	add/remove	books.	Beside	that	

it	also	discusses	how	admin	has	control	over	users	in	order	to	access	the	application	and	how	they	

can	give	users	certain	permissions	and	authorization	to	access	certain	pages	in	the	application.	

	

	

	

6.	METHODOLOGY	

11

The	goal	of	this	project	is	to	develop	a	general	consumer	to	consumer	e-commerce	application	with	

appealing	user	interface	and	strong	backend.	One	of	the	key	ideas	behind	this	project	is	its	innovation	

and	mission	to	help	student	in	learning	through	textbooks	that	are	cheap	in	price.	The	system	in	this	

application	has	fixed	the	ease	of	selling	the	books	as	the	user	can	easily	go	lookup	the	book	using	the	

ISBN	 number	 and	 determine	 the	 selling	 and	 cost	 price,	 including	 the	 details	 about	 the	 book.	 It	

bolsters	 the	 security	 of	 the	 application	 using	 number	 of	 features	 like	 JWT,	 Email	 Verification,	

Validation	and	Sanitization.	The	system	inside	application	is	highly	configurable	as	the	database	of	

this	application	is	designed	in	such	a	way	that	it	can	be	configurable	easily	as	adding	a	field	in	table	

or	adding	new	table	is	very	easy	for	MongoDB	and	hence	easily	customized	with	the	needs	of	the	

project.	 These	 design	 decisions	 were	 taken	 to	 provide	 flexibility	 for	 a	 developer	 as	 relational	

database	can	increase	the	complexity	in	the	application.	

		

This	project	is	divided	into	four	phases,	i.e.,	starting	with	the	bare	minimum	template	then	followed	

by	database	design	and	creating	endpoints	in	the	backend.	At	last,	a	NUXT	project	will	start	where	

the	user	interface	will	be	developed	and	integrated	with	the	backend.	

	

6.1	Architecture	

This	application	follows	the	client-server	network	architecture.	Client-server	network	architecture	

is	a	computer	network	architecture	that	consists	of	two	components:	client	and	server.	A	server	helps	

listens	for	requests	from	client,	processes	those	requests	and	sends	response	back	to	the	client	as	

shown	in	Figure	2.	The	client	will	act	as	a	view	interface	that	will	be	interacting	with	end	users.[5]	

	
Figure	2	Client	Server	Architecture	

	

The	 application	 is	 built	 on	 The	 Model-View-Controller	 (MVC)	 paradigm.	 It	 is	 the	 software	

architecture	that	is	used	for	developing	web	applications.	In	this,	a	software	application	is	divided	

into	three	interconnected	logical	components	that	are	model,	view	and	controller.	It	makes	it	easy	to	

develop	 web	 applications.	 The	 model	 manages	 the	 data	 and	 fundamental	 behaviors	 of	 the	

12

application.[6]	 It	 can	 respond	 to	 the	 request	 for	 information,	 change	 states	 and	 notify	

observers/events	that	are	fired	on	change	of	events.	The	controller	acts	as	the	collection	of	endpoints	

and	business	 logic	which	takes	 in	the	user	requests	and	save	 it	 to	the	model	or	respond	with	the	

appropriate	response	that	is	designed	in	the	application.	The	view	is	basically	the	user	interface	part	

of	the	application.	When	end	user	starts	the	application	it	sends	to	request	to	the	server	which	is	

handed	by	the	controller	which	fetches	the	result	from	the	database	models	and	provide	it	to	the	end	

user.	

	

	
Figure	3	MVC	Architecture	

	

Reasons	behind	choosing	MVC	over	other	architectures	 is	 its	support	 for	parallel	development.	 It	

allows	to	work	on	UI	as	well	as	Rest	Services	in	parallel	which	helps	in	faster	development	and	help	

in	 easily	 identifying	 the	 error	 in	 the	 code.	 Nuxt.js	 which	 handles	 the	 view	 of	 the	 application	

communicates	with	the	database	model	via	HTTP	REST	services	and	fetches	or	updates	data	in	the	

database.	The	application	uses	HTTP	are:	

• GET:	This	method	is	used	to	retrieve	the	data	from	the	server	

• POST:	This	method	is	used	to	push	data	on	the	server	

• PUT:	This	method	is	used	to	update	the	existing	data	on	the	server.	

• DELETE:	This	method	is	used	to	delete	the	data	on	the	server.	

	
	

6.2	Tools	and	Technologies	

13

The application was built using the MongoDB, Express, Vue.js and Node.js (MEVN) Full-stack technology
stack which is discussed as following:

Figure	4	MEVN	Technology	

MongoDB:

MongoDB	is	a	NoSQL	database	management	system	that	uses	a	JavaScript	Object	Notation	(JSON)	

styled	storage	format	Binary	JSON	(BSON)	which	is	an	extension	of	JSON	that	helps	in	encoding	type	

and	length	information	which	makes	the	parsing	faster.	BSON	also	helps	in	storing	the	binary	data	

and	 types	 to	 efficiently	 index,	 map	 and	 nest	 data	 in	 support	 of	 complex	 query	 operations	 and	

expressions.	One	 of	 the	main	 advantages	 of	 using	 the	NoSQL	database	 is	 that	 it	 does	 not	 have	 a	

relational	 structure	 of	 data	 which	 means	 it	 isn’t	 enforced	 hence	 it	 reduces	 the	 application	

development	process	by	reducing	the	complexity	and	build	up	process	during	deployments.	

In	order	to	use	MongoDB	with	server	there	is	a	node	package	called	Mongoose.	Mongoose	helps	as	it	

acts	a	data	modeling	library	that	manages	relationships	between	data	and	the	schema	in	the	backend.	

It	also	helps	in	modeling	the	JSON	objects	to	the	representation	of	the	objects	in	MongoDB	Atlas	which	

is	a	multi-tier	cloud	platform	accessible	from	anywhere	in	the	world.		MongoDB	cloud	database	helps	

in	development	and	production	of	websites	without	creating	any	database	servers	manually	and	it	

allows	remote	access	to	these	databases	from	anywhere.[7]	It	also	makes	it	possible	to	read	the	data	

directly	 from	 the	 database	 instead	 of	 writing	 code	 for	 it	 separately	 in	 some	 Extensible	 Markup	

Language	(XML)	file	or	any	other	data	object	relational	mapping	(ORM)	tool.	

	

Reason	behind	using	NoSQL	database	instead	of	SQL	relational	database	is	first	of	all	it	is	popular	to	

use	MongoDB	with	Node.js	compare	to	SQL.	SQL	contains	tables	with	fixed	rows	and	columns	which	

in	order	to	convert	to	JSON	objects	requires	ORM	which	makes	the	application	complex	as	it	forms	

another	layer	between	server	and	database.	Schemas	in	SQL	are	rigid	whereas	NoSQL	are	flexible	

and	therefore	faster	while	developing.	

	

Express:	

14

Express	 is	 a	 lightweight	 Node.js	 framework	 that	 helps	 in	 writing	 the	 back-end	 code	 for	 a	 web	

application.	 It	 helps	 developer	 in	 creating	 endpoints	 and	 a	Web	 server	 in	 a	 simple,	 flexible	 and	

scalable	way	with	minimum	lines	of	code.	It	provides	a	thin	layer	of	fundamental	web	applications	

without	hiding	any	node.js	feature.	It	is	based	on	a	Node.js	middleware	module	called	“connect”	that	

helps	in	extending	the	built-in-server	functionality.		Middleware	helps	in	making	code	shorter	with	

just	adding	them	in	the	code	while	comparing	it	to	the	Node.js.	Express	is	asynchronous	and	hence	

doesn’t	 affect	 the	 functionality	 of	 other	 features	 that	 are	 present	 in	 the	website.	 The	 reason	 for	

selecting	Express	is	the	reusability	that	the	library	provides	in	the	code	to	perform	essential	server	

functions	like	parsing	of	the	payload,	cookies,	storage	sessions.	It	also	helps	in	reusing	the	selection	

of	this	route	pattern.	It	is	also	Fast	and	efficient	with	a	great	reach	of	developers	all	over	the	world.		

	

Nuxt.js:	

It	is	free	and	opensource	JavaScript	library	built	on	top	of	the	famous	JavaScript	framework	called	

Vue.js.	This	framework	is	built	inspiring	from	Next.js	which	is	built	on	top	of	the	React	framework.	

The	most	important	feature	of	this	library	is	that	it	handles	the	routing	by	itself	and	creates	a	good	

Search	Engine	Optimization	(SEO).	Developer	does	not	need	to	install	complex	routing	libraries	while	

using	Nuxt.js.	It	makes	the	configuration	and	setup	of	the	application	very	easy	and	developer	can	

quickly	start	with	the	project.	Vue.js	which	is	the	main	body	of	this	library	is	a	progressive	JavaScript	

framework	which	is	easy	to	approach	and	highly	performant	with	extremely	versatile	as	it	is	easily	

scalable.	It	uses	the	vue	extension	files	instead	of	JS	files	like	React,	and	add	HTML,	CSS,	JS	in	a	single	

file	 for	each	component.	 In	my	opinion	 this	 framework	 is	 rising	 in	 the	market	besides	React	and	

Angular.	The	reason	for	using	Nuxt.js	is	that	it	handles	the	routing	itself	and	it	has	good	SEO.	

	

Node.js:	

Node.js	 is	very	popular	 JavaScript	run-time	environment	 that	 includes	everything	 that	a	program	

needs	 to	execute.	The	 reason	behind	 the	 invention	of	 this	application	was	 to	 run	 JavaScript	 code	

outside	the	browser	and	can	act	as	a	standalone	application.	Node.js	has	many	application	in	a	diverse	

range	as	it	can	be	used	in	building	Internet	of	Things	(IOT),	Video	String,	Live	chatting,	e-commerce	

or	any	kind	of	consumer	based	application.	Node.js	which	is	also	known	as	back-end	JavaScript	runs	

on	V8	engine	and	executes	JavaScript	outside	browser.	It	also	helps	developer	to	write	the	code	in	

command	line	tools	which	are	used	 in	server-side	scripting	hence	resulting	 in	dynamic	web	page	

content.	 The	 architecture	 that	 Node.js	 use	 is	 event-driven	 architecture	 which	 is	 capable	 of	

asynchronous	 Input/Output	 (I/O).[8]	 This	 design	 was	 specifically	 aimed	 because	 it	 can	 help	 in	

optimizing	throughput	and	scalability	 in	web	applications	and	hence	making	it	good	for	real-time	

web	applications.	The	reason	to	select	Node.js	is	that	it	is	lightweight	and	efficient	and	it	does	not	

15

need	to	run	every	time	you	change	code	instead	it	can	auto-compile	every	time	you	change	something	

using	a	node	package	called	nodemon	thus	making	it	a	right	choice	to	build	this	application	along	

with	this	technology	stack.	

	

Vuex:	

Handling	data	 in	Vue/NUXT.js	 framework	becomes	complicated	as	 the	application	starts	growing	

therefore	Vue	brings	an	interesting	concept	of	State	management	pattern	and	library	which	handles	

the	 data	 globally	 that	 you	 can	 manipulate	 and	 fetch	 anytime	 from	 any	 component.	 This	 state	

management	pattern	+	library	is	known	as	Vuex.	It	has	a	centralized	store	for	all	the	components	in	

the	application	and	thus	reducing	the	complexity	of	the	application.	It	has	rules	ensuring	that	state	

can	only	be	mutated	in	a	certain	style.	The	only	disadvantage	of	this	library	is	that	it	costs	to	learn	

more	concepts	but	once	a	developer	can	learn	them	then	it	makes	the	development	lifecycle	easy	and	

efficient.	Since	my	app	was	getting	complicated	so	I	introduced	Vuex	in	the	application	to	make	some	

data	centralized	and	manipulate	it	through	different	components.	In	the	code	it	is	always	situated	

inside	the	store	folder.	

	
Figure	5	Vuex	Store	Management	System	

Amazon Web Services S3:

Amazon	Simple	Storage	Service	(Amazon	S3)	 is	used	as	object	storage	service	as	 it	offers	a	cloud	

storage	that	is	one	of	the	best	platforms	when	it	comes	to	scalability,	data	availability,	security	and	

performance.	There	is	plethora	of	industries	that	trust	this	platform	when	it	comes	to	these	features.	

This	is	also	cost-effective	storage	classes	which	contains	many	user-friendly	features	that	are	easy	to	

use	and	optimizes	the	costs.	It	also	helps	in	organizing	data	and	configure	fine	tuned	access	controls	

16

and	providing	authorization	services	to	these	stored	objects.	In	my	application	I	am	storing	all	kind	

of	images	in	the	Amazon	S3	which	gives	a	link	back	to	me	for	that	image	and	I	can	further	store	that	

link	in	my	MongoDB	database	thus	saving	space	in	the	NoSQL	database	and	faster	read	and	writes	of	

the	images	in	the	application.	

Stripe	API:		

It	allows	developers	to	access	the	Stripe	which	is	a	payment	gateway	application.	This	API	can	help	

in	 sending	 invoices,	 accepting	 payments,	 managing	 subscription	 billing	 and	 editing	 managing	

account	information.	It	also	allows	users	to	accept	payment	online	which	is	the	main	usage	for	my	

application.	Along	with	that	stripe	also	provides	access	to	a	dashboard	where	you	can	keep	track	of	

the	payments	and	it	also	gives	data	insights	on	the	products	that	are	selling.[9]	Good	thing	about	this	

API	is	that	it	has	two	different	keys	for	development	and	production	mode	which	makes	it	easy	to	

use	in	the	application	depending	on	the	environment.	

	

Figure	6	Stripe	Dashboard	

	

	

Algolia	API:	

Algolia	is	a	powerful	hosted	search	engine	just	like	Amazon	Elasticsearch	or	Apache	SOLR.	It	offers	a	

full-text,	numerical	and	even	 facet-based	searches	 that	are	capable	of	delivering	real	 time	results	

from	the	very	first	character.	This	API	is	implemented	with	database	model	that	is	built	inside	the	

node.js	server	for	MongoDB	and	then	it	unlocks	the	feature	of	quickly	and	seamlessly	implementation	

17

of	search	with	the	website	search	bar.	It	delivers	results	under	100ms	anywhere	in	the	world.	It	also	

supports	a	good	data	analytics	system	which	provides	what	the	users	are	mostly	searching	about	and	

it	can	help	in	improving	the	application	further	by	these	insights.		

		

Figure	7	Algolia	Dashboard	

	

REST	API:	

Representational	State	Transfer	(REST)	API	is	an	architectural	style	that	is	commonly	used	for	web	

services.	It	helps	in	interacting	data	between	web	server	and	user.	REST	API	is	built	on	six	principles	

that	are	providing	a	wall	between	client	and	server,	consistent	interface,	reusability	of	response	data,	

multi-layered	systems	and	allowing	running	API	code	in	the	form	of	applets	as	well	as	scripts.	The	

HTTP	calls	that	are	made	using	REST	API	are	stateless	hence	making	it	compatible	with	cloud-based	

applications	as	they	can	be	easily	redeployed	in	case	if	something	fails.	It	can	also	help	in	scaling	or	

if	there	are	any	load	changes.[10]	Some	of	the	HTTP	methodologies	used	by	the	REST	architecture	in	

this	project	are:	

• GET:	This	method	is	used	to	retrieve	the	data	from	the	server	

• POST:	This	method	is	used	to	push	data	on	the	server	

• PUT:	This	method	is	used	to	update	the	existing	data	on	the	server.	

• DELETE:	This	method	is	used	to	delete	the	data	on	the	server.	

7.	RESULTS	

RentBooks	is	mainly	focused	on	students	who	are	not	able	to	afford	or	don’t	want	to	spend	much	on	

new	books	can	go	through	this	website	and	get	a	book	on	rent	or	purchase	a	used	book.	When	they	

launch	the	website,	they	will	be	interacted	with	the	books	that	are	available.	They	will	have	to	sign	

18

up	in	the	application	to	see	the	payment	gateway	or	selling	options.	Here	are	some	of	the	images	how	

of	how	landing	page	and	sign	up/	sign	in	page	looks	like.	The	design	is	inspired	from	the	Amazon	

website.	

		
Figure	8	Dashboard	

	

	
	

Figure	9	Sign-In	and	Sign-up	Page	

Once	the	user	signs	up	they	are	able	to	explore	the	books	and	can	even	post	the	books	to	sell.	To	get	
the	idea	of	the	prices	and	learn	more	about	the	book	they	can	note	down	the	ISBN	number	from	the	
book	which	will	link	them	to	open-source	website	called	OpenLibrary.org	that	will	show	the	selling	
prices	and	details	about	the	book.	The	customer	can	explore	the	list	of	books	and	then	add	books	to	
the	cart	whichever	is	liked	by	the	customer.	After	which	they	can	go	to	the	cart	and	can	check	out.	In	
order	 to	deliver	 the	book,	 it	necessary	 to	have	an	address	which	can	also	be	done	by	adding	 the	

19

address.	
	

	

Figure	10	Add/Edit	Address	Page	

After that you can review your order once you go to the checkout section and choose the type of
shipping between normal or express delivery and the price will change according to that option.

Figure	11	Checkout	Page	

	
	

You can also check the browsing history page to see the history of your products in case if someone saw
a product and want to revisit. This will help user to smoothly go through the pages. There is also top 2
search lookups present during the check out just in case user wants to revisit the products that were just
looked.

20

	

Figure	12	Browsing	History	Page	

You	can	also	view	each	product	by	just	clicking	on	the	product.	The	page	will	show	the	details	for	that	

product	and	then	there	is	also	a	review	system	in	place	that	will	help	in	reviewing	the	product	and	

hence	making	 it	a	verified	product.	Based	on	these,	customers	can	decide	 if	 they	want	 to	buy	the	

product.	

	
Figure	13	Review	System	Page	

Finally,	when	the	order	is	done	and	checked	out.	Then	the	user	can	go	to	payment	page	and	pay	for	

the	product	which	is	using	Stripe	API.	After	that	user	can	go	to	You	orders	Page	and	check	the	

21

orders	list	in	that	page.	

	

Figure	14	Orders	Page	

	

This	is	the	lifecycle	of	an	end	user	as	a	client	that	this	application	can	provide.	Other	than	that,	there	

is	also	an	admin	application	which	has	functions	like	performing	CRUD	operations	in	the	application	

for	a	product/owner/category.	They	also	have	the	ability	to	block/unblock	any	user	from	accessing	

the	website.	Following	is	how	the	admin	page	looks	like.	

	

	
Figure	15	Admin	Page	Dashboard	

22

The	 code	 is	 divided	 in	 three	 different	 folders	 that	 are	 server,	 client	 and	 admin	 where	 server	

represents	the	backend,	client	and	admin	represents	to	different	projects	for	the	user	interface	of	the	

end	user.	The	project	is	running	on	three	different	portals.	In	locally	it	is	running	on	port	3000,	9000,	

6000	respectively	but	these	ports	can	be	change	depending	on	the	developer’s	preference.	There	are	

secret	keys	used	in	the	server	that	can	be	dangerous	if	accessed	by	anyone	outside	the	project	so	

those	are	 stores	 in	a	 special	 file	 that	 can	only	be	accessed	by	 the	developer	 in	order	 to	maintain	

security	from	harmful	attacks.		

Figure	16	Folder	Structure	of	the	application	

23

The	models	are	generated	using	a	NPM	library	called	Mongoose	and	a	Schema	is	developed	in	the	

node.js	that	 is	also	being	imported	to	MongoDB	when	the	data	 is	posted	on	it.	There	are	optional	

values	that	can	enforce	what	kind	of	data	is	needed	and	help	in	the	validation	of	the	database.	

		

Figure	17	User	Model	

In	 the	 above	 model	 user	 schema	 is	 defined	 which	 consists	 of	 name,	 email	 and	 password	 with	

everything	being	required.	Also,	before	the	data	goes	to	the	table	the	data	gets	modified	like	before	

saving	the	password	will	be	encrypted	using	a	library	called	bcrypt.js	

Further	 these	models	are	accessed	using	 the	endpoints	which	 is	 the	backend	 layer	of	 the	project	

which	contains	routes/controllers	that	contains	endpoints	and	access	the	REST	APIs.	Below	is	the	

code	 for	one	of	 the	endpoints	 that	 is	being	used	 in	 the	application.	This	endpoint	 is	consuming	a	

24

library	called	node-mailer	that	can	help	in	verifying	the	email	and	the	we	will	send	a	unique	code	to	

the	user’s	email	that	will	help	in	identifying	user.	

Figure	18	Authentication	Endpoint	

Further	 there	 is	 a	 client	 section	which	 is	using	NUXT.js	 framework	along	with	 the	bootstrap-vue	

library	which	 is	 a	 framework	 for	CSS.	Along	with	 that	 code	 also	 contains	pages	 and	 components	

where	pages	represent	the	routes	and	components	are	reusable	components	that	can	be	used	on	any	

page.	Example	for	this	let’s	take	the	profile	page	the	html	for	that	will	look	like	this	wrapped	inside	

the	template	tags.	

<template>
 <main>
 <div class="container-fluid">
 <div class="row">
 <div class="col-sm-6">
 <div class="a-spacing-top-medium"></div>
 <h2 class="text-center">Profile Page {{ loggedInUser.name }}</h2>
 Logout
 <form action>
 <!-- Name -->
 <div class="a-spacing-top-medium">
 <label style="margin-bottom:0px;">Name</label>

25

 <input
 v-model="name"
 type="text"
 class="a-input-text"
 style="width:100%"
 :placeholder="loggedInUser.name"
 />
 </div>
 <!-- Email -->
 <div class="a-spacing-top-medium">
 <label style="margin-bottom:0px;">E-mail</label>
 <input
 v-model="email"
 type="email"
 class="a-input-text"
 style="width:100%"
 :placeholder="loggedInUser.email"
 />
 </div>

 <!-- Password -->
 <div class="a-spacing-top-medium">
 <label style="margin-bottom:0px;">Password</label>
 <input v-model="password" type="password" class="a-input-text"
style="width:100%" />
 </div>

 <hr />
 <!-- Button Submit -->
 <div class="a-spacing-top-large">
 <span class="a-button-text"
@click="onUpdateProfile">Update
 </div>
 </form>

 </div>
 </div>
 </div>
 </main>
</template>
	

This	 file	will	also	contain	 the	 javascript	which	contains	 the	 information	 that	we	are	 trying	 to	call	

above	in	the	brackets	“{{loggedInUser.name}}”.		

<script>
import { mapGetters,mapActions } from "vuex";
export default {

26

 data() {
 return {
 name: "",
 email: "",
 password: ""
 };
 },
 computed: {
 ...mapGetters(["loggedInUser"])
 },
 methods: {
 ...mapActions(["clearCache"]),
 async onUpdateProfile() {
 try {
 let data = {
 name: this.name,
 email: this.email,
 password: this.password
 };
 let response = await this.$axios.$put("/api/auth/user", data);
 if (response.success) {
 this.name = "";
 this.email = "";
 this.password = "";
 await this.$auth.fetchUser();
 }
 } catch (err) {
 console.log(err);
 }
 },
 async onLogout() {
 await this.clearCache();
 await this.$auth.logout();
 }
 }
};
</script>

This	file	contains	data	which	contains	the	state	of	values	that	we	are	using	in	this	page.	Then	there	

are	methods	that	perform	when	the	function	is	called	by	the	end	user.	It	contains	mapGetters	and	

mapActions,	where	the	former	one	is	to	get	some	data	from	the	centralized	store	whereas	the	later	

one	is	when	you	need	to	perform	mutation	to	the	data	that	is	present	in	that	vuex	store.	

27

8.	FUTURE	WORKS	

The	aim	of	this	application	is	the	help	people	getting	books	easily	at	cheaper	price	or	selling	the	books	

if	they	do	not	require	it.	Even	though	the	UI	is	built	inspiring	from	amazon	but	it	could	become	better.	

For	the	sake	of	user	interface	there	are	some	hard	coded	texts	which	would	be	great	to	convert	into	

more	dynamic	nature.	Also,	this	application	requires	usability	testing	where	representative	users	can	

try	it	and	give	advice	on	how	the	application	can	be	improved	in	the	perspective	of	user	interface.	

Besides	that,	it	also	requires	unit	testing	for	both	front-end	and	backend	in	order	to	see	if	there	is	any	

breaking	point	in	the	application.	There	is	be	a	limited	amount	of	data	that	will	be	used	in	the	website	

due	to	time	constraints	and	since	the	website	will	be	just	in	a	beta	phase	and	not	in	production	mode.	

But	eventually	this	data	could	be	increased	and	loading	tests	can	be	applied	to	application	to	see	the	

amount	of	traffic	that	the	website	can	handle.	The	delivery	service	could	be	improved	in	this	as	some	

delivery	methods	 like	getting	books	deliver	 through	UPS	or	 any	other	postal	 service	 could	be	an	

interesting	add	on.	As	 this	will	make	easier	 for	end	users	who	are	selling	books	easier	and	more	

affordable.	

	

The	application	currently	uses	NoSQL	as	the	database	but	in	future	some	part	of	the	application	like	

payment	 gateway	 can	 be	migrated	 to	 SQL	 relational	 database	 because	 the	 relational	 database	 is	

helpful	 and	 safer	 for	when	 it	 comes	 to	 financial	 tasks	 as	 they	 support	property	 called	Atomicity,	

consistency,	 isolation	and	durability	 (ACID).	Therefore,	 some	part	of	 the	application	 can	use	SQL	

which	directly	leads	to	the	next	concept	which	is	microservices	application.	Currently	the	application	

has	 a	 single	 codebase	 and	 is	 therefore	monolithic	 application.	 But	 in	 future	 as	 the	 services	 and	

features	increases	along	with	the	requirement	of	high	scalability	then	the	application	can	be	broken	

down	to	different	parts	where	each	part	 is	scaled	and	 is	easily	pluggable	with	other	services	and	

hence	convert	 it	 to	a	microservices	architecture.	This	change	can	help	bring	more	 tech	stack	and	

reusable	services	bring	in	the	application.	

	

Furthermore,	the	application	is	currently	built	upon	REST	API	which	is	currently	protected	through	

authentication	and	authorization.	But	still	there	could	be	data	leaks	in	the	application	that	are	not	

known	at	 this	point.	Data	 leaks	can	be	extremely	bad	 for	 the	website	as	 it	makes	 the	application	

vulnerable.	In	order	to	stop	these	leaks,	it	will	require	intensive	testing.	There	is	some	data	that	can	

be	stored	in	the	database	instead	of	the	local	storage	which	could	be	vulnerable.	Hence	making	those	

changes	would	be	a	good	way	to	start	removing	data	from	the	reach	of	any	end	user.		

	

	

28

9.	CONCLUSION	

Idea	is	to	build	a	customer-to-customer	Bookstore	e-commerce	application	that	can	help	students	in	

lending/renting	books	easily	online	in	a	small	area.	This	will	help	students	or	any	user	to	save	up	

money	and	resources.	This	application	is	also	helping	the	reuse	of	books	rather	than	throwing	them.	

There	 are	 be	 three	 type	 of	 roles	 that	 are	 using	 this	 application	 buyer,	 seller	 and	 admin.	 The	

development	of	the	application	was	a	great	part	of	learning	as	teaches	a	lot	about	the	development	

lifecycle.	It	also	taught	how	MVC	architecture	can	be	implemented	to	create	a	real-life	project.	There	

are	some	standards	that	were	being	followed	while	building	the	application	one	of	them	was	to	make	

the	code	write	in	a	correct	code	format.	To	follow	this	a	package	called	prettier	and	pretty-quick	were	

installed.	These	packages	helped	in	making	the	code	look	well	formatted	and	easier	to	understand	

for	anyone	who	reads	 it.	A	good	amount	of	suggestion	was	provided	by	Professors	that	helped	in	

shaping	the	application.	

	

The	application	is	built	on	a	lot	of	different	APIs	and	technology	stack	hence	Full	Stack	application.		

All	 the	 third-party	 APIs	 contains	 sensitive	 keys	 that	 are	 hidden	 and	 are	 only	 available	 to	 the	

developer.	There	were	some	challenging	tasks	 like	shaping	the	database	and	then	structuring	the	

data	model	in	order	to	consume	the	REST	APIs.	Lot	of	efforts	were	put	in	researching	the	third-party	

APIs	that	will	be	appropriate	for	this	application	and	then	those	were	filtered.	There	was	a	tough	

decision	on	selecting	the	frontend	framework	but	since	I	wanted	the	application	to	be	simple	and	

light	weighted	therefore,	I	chose	NUXT.js	which	comes	with	Vue.js	framework	and	Vuex.	It	decreased	

the	amount	of	work	for	routing.	This	website	is	inspired	from	amazon	because	that	application	also	

first	started	with	the	books	so	that	was	inspiration	point	behind	the	design.	The	application	pages	

were	divided	in	different	components	in	order	to	reuse	them	which	saves	a	lot	of	time	and	effort.	

	

This	 project	 also	 helped	 me	 in	 learning	 about	 external	 technologies	 that	 are	 used	 to	 build	 this	

application.	For	example,	postman	was	heavily	used	to	build	endpoints.	Even	though	I	have	worked	

on	postman	before	but	for	this	application	I	tried	some	different	options	that	made	me	good	with	

postman	and	its	functionality.	I	learned	how	the	documentations	and	stack	overflow	can	be	helpful	

for	any	developer	who	is	building	project.	Overall,	this	project	has	been	a	perfect	opportunity	for	me	

as	it	summed	up	my	learning	from	the	Masters	in	Information	in	Science	and	Technology	program	

and	also	made	me	one	step	closer	to	deal	with	the	real-world	web	applications.	

	

	

	

29

9.	REFERENCES	

1. Abdala,	Mohammed	&	Khider,	Noor.	(2011).	Online	E-Book	Store	Website	Design.	i-

manager's	journal	on	software	engineering.	5.	41-46.	10.26634/jse.5.4.1449.	

	

2. Deepanvita	Paliwal,	B.	Sreevidya,	"Design	and	development	of	an	intelligent	web	application	

for	a	direct	consumer	to	consumer	trading	over	the	Internet",	Inventive	Communication	and	

Computational	Technologies	(ICICCT)	2017	International	Conference	on,	pp.	56-58,	2017.	

	

3. Department	of	Information	Technology	Vellalar	College	of	Engineering	and	Technology,	

Thindal,	Erode,	Tamilnadu,	India,	Pin	Code:	638012,	and	M	Sindhia.	“BOOKLAND	–	AN	

ANDROID	APPLICATION	FOR	RENTAL	BOOKS.”	GEDRAG	&	ORGANISATIE	REVIEW	33,	no.	02	

(May	14,	2020).	https://doi.org/10.37896/GOR33.02/139.	

	

4. Gil,	Joon-Min,	JongBum	Lim,	and	Dong-Mahn	Seo.	“Design	and	Implementation	of	

MapReduce-Based	Book	Recommendation	System	by	Analysis	of	Large-Scale	Book-Rental	

Data.”	In	Advanced	Multimedia	and	Ubiquitous	Engineering,	edited	by	James	J.	(Jong	Hyuk)	

Park,	Hai	Jin,	Young-Sik	Jeong,	and	Muhammad	Khurram	Khan,	713–19.	Singapore:	Springer	

Singapore,	2016.	

	
5. Juszczuk, D., Tarnawski, J., Karla, T., & Duzinkiewicz, K. (2017, June). Real-time basic principles

nuclear reactor simulator based on client-server network architecture with WebBrowser as user

interface. In Polish Control Conference (pp. 344-353). Springer, Cham.	

	
6. Majeed, A., & Rauf, I. (2018). MVC architecture: a detailed insight to the modern web applications

development. Peer Review Journal of Solar & Photoenergy Systems, 1(1), 1-7.	

	
7. Banker, K., Garrett, D., Bakkum, P., & Verch, S. (2016). MongoDB in Action: Covers MongoDB

version 3.0. Simon and Schuster.	

	
8. Liang, L., Zhu, L., Shang, W., Feng, D., & Xiao, Z. (2017, May). Express supervision system

based on NodeJS and MongoDB. In 2017 IEEE/ACIS 16th International Conference on Computer

and Information Science (ICIS) (pp. 607-612). IEEE.	
	

9. Jewell, J., & Marden, M. (2018). The business value of the stripe payments platform.	

	
10. Masse, M. (2011). REST API design rulebook: designing consistent RESTful web service

interfaces. " O'Reilly Media, Inc.".	

https://doi.org/10.37896/GOR33.02/139

